Source code for galaxy.tools.parameters.validation

"""
Classes related to parameter validation.
"""

import abc
import json
import logging
import os.path

import regex

from galaxy import (
    model,
    util,
)

log = logging.getLogger(__name__)


[docs]class Validator(abc.ABC): """ A validator checks that a value meets some conditions OR raises ValueError """ requires_dataset_metadata = False
[docs] @classmethod def from_element(cls, param, elem): """ Initialize the appropriate Validator class example call `validation.Validator.from_element(ToolParameter_object, Validator_object)` needs to be implemented in the subclasses and should return the corresponding Validator object by a call to `cls( ... )` which calls the `__init__` method of the corresponding validator param cls the Validator class param param the element to be evaluated (which contains the validator) param elem the validator element return an object of a Validator subclass that corresponds to the type attribute of the validator element """ _type = elem.get("type") assert _type is not None, "Required 'type' attribute missing from validator" return validator_types[_type].from_element(param, elem)
[docs] def __init__(self, message, negate=False): self.message = message self.negate = util.asbool(negate) super().__init__()
[docs] @abc.abstractmethod def validate(self, value, trans=None, message=None, value_to_show=None): """ validate a value needs to be implemented in classes derived from validator. the implementation needs to call `super().validate()` giving result as a bool (which should be true if the validation is positive and false otherwise) and the value that is validated. the Validator.validate function will then negate the value depending on `self.negate` and return None if - value is True and negate is False - value is False and negate is True and raise a ValueError otherwise. return None if positive validation, otherwise a ValueError is raised """ assert isinstance(value, bool), "value must be boolean" if message is None: message = self.message if value_to_show and "%s" in message: message = message % value_to_show if (not self.negate and value) or (self.negate and not value): return else: raise ValueError(message)
[docs]class RegexValidator(Validator): """ Validator that evaluates a regular expression """
[docs] @classmethod def from_element(cls, param, elem): return cls(elem.get("message"), elem.text, elem.get("negate", "false"))
[docs] def __init__(self, message, expression, negate): if message is None: message = f"Value '%s' does {'not ' if negate == 'false' else ''}match regular expression '{expression.replace('%', '%%')}'" super().__init__(message, negate) # Compile later. RE objects used to not be thread safe. Not sure about # the sre module. self.expression = expression
[docs] def validate(self, value, trans=None): if not isinstance(value, list): value = [value] for val in value: match = regex.match(self.expression, val or "") super().validate(match is not None, value_to_show=val)
[docs]class ExpressionValidator(Validator): """ Validator that evaluates a python expression using the value """
[docs] @classmethod def from_element(cls, param, elem): return cls(elem.get("message"), elem.text, elem.get("negate", "false"))
[docs] def __init__(self, message, expression, negate): if message is None: message = f"Value '%s' does not evaluate to {'True' if negate == 'false' else 'False'} for '{expression}'" super().__init__(message, negate) self.expression = expression # Save compiled expression, code objects are thread safe (right?) self.compiled_expression = compile(expression, "<string>", "eval")
[docs] def validate(self, value, trans=None): try: evalresult = eval(self.compiled_expression, dict(value=value)) except Exception: super().validate(False, message=f"Validator '{self.expression}' could not be evaluated on '{value}'") super().validate(bool(evalresult), value_to_show=value)
[docs]class InRangeValidator(ExpressionValidator): """ Validator that ensures a number is in a specified range """
[docs] @classmethod def from_element(cls, param, elem): return cls( elem.get("message"), elem.get("min"), elem.get("max"), elem.get("exclude_min", "false"), elem.get("exclude_max", "false"), elem.get("negate", "false"), )
[docs] def __init__(self, message, range_min, range_max, exclude_min=False, exclude_max=False, negate=False): """ When the optional exclude_min and exclude_max attributes are set to true, the range excludes the end points (i.e., min < value < max), while if set to False (the default), then range includes the end points (1.e., min <= value <= max). Combinations of exclude_min and exclude_max values are allowed. """ self.min = range_min if range_min is not None else "-inf" self.exclude_min = util.asbool(exclude_min) self.max = range_max if range_max is not None else "inf" self.exclude_max = util.asbool(exclude_max) assert float(self.min) <= float(self.max), "min must be less than or equal to max" # Remove unneeded 0s and decimal from floats to make message pretty. op1 = "<=" op2 = "<=" if self.exclude_min: op1 = "<" if self.exclude_max: op2 = "<" expression = f"float('{self.min}') {op1} float(value) {op2} float('{self.max}')" if message is None: message = f"Value ('%s') must {'not ' if negate == 'true' else ''}fulfill {expression}" super().__init__(message, expression, negate)
[docs]class LengthValidator(InRangeValidator): """ Validator that ensures the length of the provided string (value) is in a specific range """
[docs] @classmethod def from_element(cls, param, elem): return cls(elem.get("message"), elem.get("min"), elem.get("max"), elem.get("negate", "false"))
[docs] def __init__(self, message, length_min, length_max, negate): if message is None: message = f"Must {'not ' if negate == 'true' else ''}have length of at least {length_min} and at most {length_max}" super().__init__(message, range_min=length_min, range_max=length_max, negate=negate)
[docs] def validate(self, value, trans=None): if value is None: raise ValueError("No value provided") super().validate(len(value) if value else 0, trans)
[docs]class DatasetOkValidator(Validator): """ Validator that checks if a dataset is in an 'ok' state """
[docs] @classmethod def from_element(cls, param, elem): negate = elem.get("negate", "false") message = elem.get("message") if message is None: if negate == "false": message = "The selected dataset is still being generated, select another dataset or wait until it is completed" else: message = "The selected dataset must not be in state OK" return cls(message, negate)
[docs] def validate(self, value, trans=None): if value: super().validate(value.state == model.Dataset.states.OK)
[docs]class DatasetEmptyValidator(Validator): """ Validator that checks if a dataset has a positive file size. """
[docs] @classmethod def from_element(cls, param, elem): message = elem.get("message") negate = elem.get("negate", "false") if not message: message = f"The selected dataset is {'non-' if negate == 'true' else ''}empty, this tool expects {'non-' if negate == 'false' else ''}empty files." return cls(message, negate)
[docs] def validate(self, value, trans=None): if value: super().validate(value.get_size() != 0)
[docs]class DatasetExtraFilesPathEmptyValidator(Validator): """ Validator that checks if a dataset's extra_files_path exists and is not empty. """
[docs] @classmethod def from_element(cls, param, elem): message = elem.get("message") negate = elem.get("negate", "false") if not message: message = f"The selected dataset's extra_files_path directory is {'non-' if negate == 'true' else ''}empty or does {'not ' if negate == 'false' else ''}exist, this tool expects {'non-' if negate == 'false' else ''}empty extra_files_path directories associated with the selected input." return cls(message, negate)
[docs] def validate(self, value, trans=None): if value: super().validate(value.get_total_size() != value.get_size())
[docs]class MetadataValidator(Validator): """ Validator that checks for missing metadata """ requires_dataset_metadata = True
[docs] @classmethod def from_element(cls, param, elem): message = elem.get("message") return cls( message=message, check=elem.get("check", ""), skip=elem.get("skip", ""), negate=elem.get("negate", "false") )
[docs] def __init__(self, message=None, check="", skip="", negate="false"): if not message: if not util.asbool(negate): message = "Metadata '%s' missing, click the pencil icon in the history item to edit / save the metadata attributes" else: if check != "": message = f"At least one of the checked metadata '{check}' is set, click the pencil icon in the history item to edit / save the metadata attributes" elif skip != "": message = f"At least one of the non skipped metadata '{skip}' is set, click the pencil icon in the history item to edit / save the metadata attributes" super().__init__(message, negate) self.check = check.split(",") if check else None self.skip = skip.split(",") if skip else None
[docs] def validate(self, value, trans=None): if value: # TODO why this validator checks for isinstance(value, model.DatasetInstance) missing = value.missing_meta(check=self.check, skip=self.skip) super().validate(isinstance(value, model.DatasetInstance) and not missing, value_to_show=missing)
[docs]class MetadataEqualValidator(Validator): """ Validator that checks for a metadata value for equality metadata values that are lists are converted as comma separated string everything else is converted to the string representation """ requires_dataset_metadata = True
[docs] def __init__(self, metadata_name=None, value=None, message=None, negate="false"): if not message: if not util.asbool(negate): message = f"Metadata value for '{metadata_name}' must be '{value}', but it is '%s'." else: message = f"Metadata value for '{metadata_name}' must not be '{value}' but it is." super().__init__(message, negate) self.metadata_name = metadata_name self.value = value
[docs] @classmethod def from_element(cls, param, elem): value = elem.get("value", None) or json.loads(elem.get("value_json", "null")) return cls( metadata_name=elem.get("metadata_name", None), value=value, message=elem.get("message", None), negate=elem.get("negate", "false"), )
[docs] def validate(self, value, trans=None): if value: metadata_value = getattr(value.metadata, self.metadata_name) super().validate(metadata_value == self.value, value_to_show=metadata_value)
[docs]class UnspecifiedBuildValidator(Validator): """ Validator that checks for dbkey not equal to '?' """ requires_dataset_metadata = True
[docs] @classmethod def from_element(cls, param, elem): message = elem.get("message") negate = elem.get("negate", "false") if not message: message = f"{'Unspecified' if negate == 'false' else 'Specified'} genome build, click the pencil icon in the history item to {'set' if negate == 'false' else 'remove'} the genome build" return cls(message, negate)
[docs] def validate(self, value, trans=None): # if value is None, we cannot validate if value: dbkey = value.metadata.dbkey # TODO can dbkey really be a list? if isinstance(dbkey, list): dbkey = dbkey[0] super().validate(dbkey != "?")
[docs]class NoOptionsValidator(Validator): """ Validator that checks for empty select list """
[docs] @classmethod def from_element(cls, param, elem): message = elem.get("message") negate = elem.get("negate", "false") if not message: message = f"{'No options' if negate == 'false' else 'Options'} available for selection" return cls(message, negate)
[docs] def validate(self, value, trans=None): super().validate(value is not None)
[docs]class EmptyTextfieldValidator(Validator): """ Validator that checks for empty text field """
[docs] @classmethod def from_element(cls, param, elem): message = elem.get("message") negate = elem.get("negate", "false") if not message: if negate == "false": message = elem.get("message", "Field requires a value") else: message = elem.get("message", "Field must not set a value") return cls(message, negate)
[docs] def validate(self, value, trans=None): super().validate(value != "")
[docs]class MetadataInFileColumnValidator(Validator): """ Validator that checks if the value for a dataset's metadata item exists in a file. Deprecated: DataTables are now the preferred way. note: this is covered in a framework test (validation_dataset_metadata_in_file) """ requires_dataset_metadata = True
[docs] @classmethod def from_element(cls, param, elem): filename = elem.get("filename") assert filename, f"Required 'filename' attribute missing from {elem.get('type')} validator." filename = f"{param.tool.app.config.tool_data_path}/{filename.strip()}" assert os.path.exists(filename), f"File {filename} specified by the 'filename' attribute not found" metadata_name = elem.get("metadata_name") assert metadata_name, f"Required 'metadata_name' attribute missing from {elem.get('type')} validator." metadata_name = metadata_name.strip() metadata_column = int(elem.get("metadata_column", 0)) split = elem.get("split", "\t") message = elem.get("message", f"Value for metadata {metadata_name} was not found in {filename}.") line_startswith = elem.get("line_startswith") if line_startswith: line_startswith = line_startswith.strip() negate = elem.get("negate", "false") return cls(filename, metadata_name, metadata_column, message, line_startswith, split, negate)
[docs] def __init__( self, filename, metadata_name, metadata_column, message="Value for metadata not found.", line_startswith=None, split="\t", negate="false", ): super().__init__(message, negate) self.metadata_name = metadata_name self.valid_values = set() with open(filename) as fh: for line in fh: if line_startswith is None or line.startswith(line_startswith): fields = line.split(split) if metadata_column < len(fields): self.valid_values.add(fields[metadata_column].strip())
[docs] def validate(self, value, trans=None): if not value: return super().validate( value.metadata.spec[self.metadata_name].param.to_string(value.metadata.get(self.metadata_name)) in self.valid_values )
[docs]class ValueInDataTableColumnValidator(Validator): """ Validator that checks if a value is in a tool data table column. note: this is covered in a framework test (validation_value_in_datatable) """
[docs] @classmethod def from_element(cls, param, elem): table_name = elem.get("table_name") assert table_name, f"Required 'table_name' attribute missing from {elem.get('type')} validator." tool_data_table = param.tool.app.tool_data_tables[table_name] column = elem.get("metadata_column", 0) try: column = int(column) except ValueError: pass message = elem.get("message", f"Value was not found in {table_name}.") negate = elem.get("negate", "false") return cls(tool_data_table, column, message, negate)
[docs] def __init__(self, tool_data_table, column, message="Value not found.", negate="false"): super().__init__(message, negate) self.valid_values = [] self._data_table_content_version = None self._tool_data_table = tool_data_table if isinstance(column, str): column = tool_data_table.columns[column] self._column = column self._load_values()
def _load_values(self): self._data_table_content_version, data_fields = self._tool_data_table.get_version_fields() self.valid_values = [] for fields in data_fields: if self._column < len(fields): self.valid_values.append(fields[self._column])
[docs] def validate(self, value, trans=None): if not value: return if not self._tool_data_table.is_current_version(self._data_table_content_version): log.debug( "ValueInDataTableColumnValidator: values are out of sync with data table (%s), updating validator.", self._tool_data_table.name, ) self._load_values() super().validate(value in self.valid_values)
[docs]class ValueNotInDataTableColumnValidator(ValueInDataTableColumnValidator): """ Validator that checks if a value is NOT in a tool data table column. Equivalent to ValueInDataTableColumnValidator with `negate="true"`. note: this is covered in a framework test (validation_value_in_datatable) """
[docs] def __init__(self, tool_data_table, metadata_column, message="Value already present.", negate="false"): super().__init__(tool_data_table, metadata_column, message, negate)
[docs] def validate(self, value, trans=None): try: super().validate(value) except ValueError: return else: raise ValueError(self.message)
[docs]class MetadataInDataTableColumnValidator(ValueInDataTableColumnValidator): """ Validator that checks if the value for a dataset's metadata item exists in a file. note: this is covered in a framework test (validation_metadata_in_datatable) """ requires_dataset_metadata = True
[docs] @classmethod def from_element(cls, param, elem): table_name = elem.get("table_name") assert table_name, f"Required 'table_name' attribute missing from {elem.get('type')} validator." tool_data_table = param.tool.app.tool_data_tables[table_name] metadata_name = elem.get("metadata_name") assert metadata_name, f"Required 'metadata_name' attribute missing from {elem.get('type')} validator." metadata_name = metadata_name.strip() # TODO rename to column? metadata_column = elem.get("metadata_column", 0) try: metadata_column = int(metadata_column) except ValueError: pass message = elem.get("message", f"Value for metadata {metadata_name} was not found in {table_name}.") negate = elem.get("negate", "false") return cls(tool_data_table, metadata_name, metadata_column, message, negate)
[docs] def __init__( self, tool_data_table, metadata_name, metadata_column, message="Value for metadata not found.", negate="false" ): super().__init__(tool_data_table, metadata_column, message, negate) self.metadata_name = metadata_name
[docs] def validate(self, value, trans=None): super().validate( value.metadata.spec[self.metadata_name].param.to_string(value.metadata.get(self.metadata_name)), trans )
[docs]class MetadataNotInDataTableColumnValidator(MetadataInDataTableColumnValidator): """ Validator that checks if the value for a dataset's metadata item doesn't exists in a file. Equivalent to MetadataInDataTableColumnValidator with `negate="true"`. note: this is covered in a framework test (validation_metadata_in_datatable) """ requires_dataset_metadata = True
[docs] def __init__( self, tool_data_table, metadata_name, metadata_column, message="Value for metadata not found.", negate="false" ): super().__init__(tool_data_table, metadata_name, metadata_column, message, negate)
[docs] def validate(self, value, trans=None): try: super().validate(value, trans) except ValueError: return else: raise ValueError(self.message)
[docs]class MetadataInRangeValidator(InRangeValidator): """ validator that ensures metadata is in a specified range note: this is covered in a framework test (validation_metadata_in_range) """ requires_dataset_metadata = True
[docs] @classmethod def from_element(cls, param, elem): metadata_name = elem.get("metadata_name") assert metadata_name, f"Required 'metadata_name' attribute missing from {elem.get('type')} validator." metadata_name = metadata_name.strip() ret = cls( metadata_name, elem.get("message"), elem.get("min"), elem.get("max"), elem.get("exclude_min", "false"), elem.get("exclude_max", "false"), elem.get("negate", "false"), ) ret.message = "Metadata: " + ret.message return ret
[docs] def __init__(self, metadata_name, message, range_min, range_max, exclude_min, exclude_max, negate): self.metadata_name = metadata_name super().__init__(message, range_min, range_max, exclude_min, exclude_max, negate)
[docs] def validate(self, value, trans=None): if value: if not isinstance(value, model.DatasetInstance): raise ValueError("A non-dataset value was provided.") try: value_to_check = float( value.metadata.spec[self.metadata_name].param.to_string(value.metadata.get(self.metadata_name)) ) except KeyError: raise ValueError(f"{self.metadata_name} Metadata missing") except ValueError: raise ValueError(f"{self.metadata_name} must be a float or an integer") super().validate(value_to_check, trans)
validator_types = dict( expression=ExpressionValidator, regex=RegexValidator, in_range=InRangeValidator, length=LengthValidator, metadata=MetadataValidator, dataset_metadata_equal=MetadataEqualValidator, unspecified_build=UnspecifiedBuildValidator, no_options=NoOptionsValidator, empty_field=EmptyTextfieldValidator, empty_dataset=DatasetEmptyValidator, empty_extra_files_path=DatasetExtraFilesPathEmptyValidator, dataset_metadata_in_data_table=MetadataInDataTableColumnValidator, dataset_metadata_not_in_data_table=MetadataNotInDataTableColumnValidator, dataset_metadata_in_range=MetadataInRangeValidator, value_in_data_table=ValueInDataTableColumnValidator, value_not_in_data_table=ValueNotInDataTableColumnValidator, dataset_ok_validator=DatasetOkValidator, ) deprecated_validator_types = dict(dataset_metadata_in_file=MetadataInFileColumnValidator) validator_types.update(deprecated_validator_types)