Warning

This document is for an old release of Galaxy. You can alternatively view this page in the latest release if it exists or view the top of the latest release's documentation.

Source code for galaxy.tools.parameters.validation

"""
Classes related to parameter validation.
"""

import abc
import json
import logging
import os.path

import regex

from galaxy import (
    model,
    util,
)

log = logging.getLogger(__name__)


[docs]class Validator(abc.ABC): """ A validator checks that a value meets some conditions OR raises ValueError """ requires_dataset_metadata = False
[docs] @classmethod def from_element(cls, param, elem): """ Initialize the appropriate Validator class example call `validation.Validator.from_element(ToolParameter_object, Validator_object)` needs to be implemented in the subclasses and should return the corresponding Validator object by a call to `cls( ... )` which calls the `__init__` method of the corresponding validator param cls the Validator class param param the element to be evaluated (which contains the validator) param elem the validator element return an object of a Validator subclass that corresponds to the type attribute of the validator element """ _type = elem.get("type") assert _type is not None, "Required 'type' attribute missing from validator" return validator_types[_type].from_element(param, elem)
[docs] def __init__(self, message, negate=False): self.message = message self.negate = util.asbool(negate) super().__init__()
[docs] @abc.abstractmethod def validate(self, value, trans=None, message=None, value_to_show=None): """ validate a value needs to be implemented in classes derived from validator. the implementation needs to call `super().validate()` giving result as a bool (which should be true if the validation is positive and false otherwise) and the value that is validated. the Validator.validate function will then negate the value depending on `self.negate` and return None if - value is True and negate is False - value is False and negate is True and raise a ValueError otherwise. return None if positive validation, otherwise a ValueError is raised """ assert isinstance(value, bool), "value must be boolean" if message is None: message = self.message if value_to_show and "%s" in message: message = message % value_to_show if (not self.negate and value) or (self.negate and not value): return else: raise ValueError(message)
[docs]class RegexValidator(Validator): """ Validator that evaluates a regular expression """
[docs] @classmethod def from_element(cls, param, elem): return cls(elem.get("message"), elem.text, elem.get("negate", "false"))
[docs] def __init__(self, message, expression, negate): if message is None: message = f"Value '%s' does {'not ' if negate == 'false' else ''}match regular expression '{expression.replace('%', '%%')}'" super().__init__(message, negate) # Compile later. RE objects used to not be thread safe. Not sure about # the sre module. self.expression = expression
[docs] def validate(self, value, trans=None): if not isinstance(value, list): value = [value] for val in value: match = regex.match(self.expression, val or "") super().validate(match is not None, value_to_show=val)
[docs]class ExpressionValidator(Validator): """ Validator that evaluates a python expression using the value """
[docs] @classmethod def from_element(cls, param, elem): return cls(elem.get("message"), elem.text, elem.get("negate", "false"))
[docs] def __init__(self, message, expression, negate): if message is None: message = f"Value '%s' does not evaluate to {'True' if negate == 'false' else 'False'} for '{expression}'" super().__init__(message, negate) self.expression = expression # Save compiled expression, code objects are thread safe (right?) self.compiled_expression = compile(expression, "<string>", "eval")
[docs] def validate(self, value, trans=None): try: evalresult = eval(self.compiled_expression, dict(value=value)) except Exception: super().validate(False, message=f"Validator '{self.expression}' could not be evaluated on '{value}'") super().validate(bool(evalresult), value_to_show=value)
[docs]class InRangeValidator(ExpressionValidator): """ Validator that ensures a number is in a specified range """
[docs] @classmethod def from_element(cls, param, elem): return cls( elem.get("message"), elem.get("min"), elem.get("max"), elem.get("exclude_min", "false"), elem.get("exclude_max", "false"), elem.get("negate", "false"), )
[docs] def __init__(self, message, range_min, range_max, exclude_min=False, exclude_max=False, negate=False): """ When the optional exclude_min and exclude_max attributes are set to true, the range excludes the end points (i.e., min < value < max), while if set to False (the default), then range includes the end points (1.e., min <= value <= max). Combinations of exclude_min and exclude_max values are allowed. """ self.min = range_min if range_min is not None else "-inf" self.exclude_min = util.asbool(exclude_min) self.max = range_max if range_max is not None else "inf" self.exclude_max = util.asbool(exclude_max) assert float(self.min) <= float(self.max), "min must be less than or equal to max" # Remove unneeded 0s and decimal from floats to make message pretty. op1 = "<=" op2 = "<=" if self.exclude_min: op1 = "<" if self.exclude_max: op2 = "<" expression = f"float('{self.min}') {op1} float(value) {op2} float('{self.max}')" if message is None: message = f"Value ('%s') must {'not ' if negate == 'true' else ''}fulfill {expression}" super().__init__(message, expression, negate)
[docs]class LengthValidator(InRangeValidator): """ Validator that ensures the length of the provided string (value) is in a specific range """
[docs] @classmethod def from_element(cls, param, elem): return cls(elem.get("message"), elem.get("min"), elem.get("max"), elem.get("negate", "false"))
[docs] def __init__(self, message, length_min, length_max, negate): if message is None: message = f"Must {'not ' if negate == 'true' else ''}have length of at least {length_min} and at most {length_max}" super().__init__(message, range_min=length_min, range_max=length_max, negate=negate)
[docs] def validate(self, value, trans=None): if value is None: raise ValueError("No value provided") super().validate(len(value) if value else 0, trans)
[docs]class DatasetOkValidator(Validator): """ Validator that checks if a dataset is in an 'ok' state """
[docs] @classmethod def from_element(cls, param, elem): negate = elem.get("negate", "false") message = elem.get("message") if message is None: if negate == "false": message = "The selected dataset is still being generated, select another dataset or wait until it is completed" else: message = "The selected dataset must not be in state OK" return cls(message, negate)
[docs] def validate(self, value, trans=None): if value: super().validate(value.state == model.Dataset.states.OK)
[docs]class DatasetEmptyValidator(Validator): """ Validator that checks if a dataset has a positive file size. """
[docs] @classmethod def from_element(cls, param, elem): message = elem.get("message") negate = elem.get("negate", "false") if not message: message = f"The selected dataset is {'non-' if negate == 'true' else ''}empty, this tool expects {'non-' if negate == 'false' else ''}empty files." return cls(message, negate)
[docs] def validate(self, value, trans=None): if value: super().validate(value.get_size() != 0)
[docs]class DatasetExtraFilesPathEmptyValidator(Validator): """ Validator that checks if a dataset's extra_files_path exists and is not empty. """
[docs] @classmethod def from_element(cls, param, elem): message = elem.get("message") negate = elem.get("negate", "false") if not message: message = f"The selected dataset's extra_files_path directory is {'non-' if negate == 'true' else ''}empty or does {'not ' if negate == 'false' else ''}exist, this tool expects {'non-' if negate == 'false' else ''}empty extra_files_path directories associated with the selected input." return cls(message, negate)
[docs] def validate(self, value, trans=None): if value: super().validate(value.get_total_size() != value.get_size())
[docs]class MetadataValidator(Validator): """ Validator that checks for missing metadata """ requires_dataset_metadata = True
[docs] @classmethod def from_element(cls, param, elem): message = elem.get("message") return cls( message=message, check=elem.get("check", ""), skip=elem.get("skip", ""), negate=elem.get("negate", "false") )
[docs] def __init__(self, message=None, check="", skip="", negate="false"): if not message: if not util.asbool(negate): message = "Metadata '%s' missing, click the pencil icon in the history item to edit / save the metadata attributes" else: if check != "": message = f"At least one of the checked metadata '{check}' is set, click the pencil icon in the history item to edit / save the metadata attributes" elif skip != "": message = f"At least one of the non skipped metadata '{skip}' is set, click the pencil icon in the history item to edit / save the metadata attributes" super().__init__(message, negate) self.check = check.split(",") if check else None self.skip = skip.split(",") if skip else None
[docs] def validate(self, value, trans=None): if value: # TODO why this validator checks for isinstance(value, model.DatasetInstance) missing = value.missing_meta(check=self.check, skip=self.skip) super().validate(isinstance(value, model.DatasetInstance) and not missing, value_to_show=missing)
[docs]class MetadataEqualValidator(Validator): """ Validator that checks for a metadata value for equality metadata values that are lists are converted as comma separated string everything else is converted to the string representation """ requires_dataset_metadata = True
[docs] def __init__(self, metadata_name=None, value=None, message=None, negate="false"): if not message: if not util.asbool(negate): message = f"Metadata value for '{metadata_name}' must be '{value}', but it is '%s'." else: message = f"Metadata value for '{metadata_name}' must not be '{value}' but it is." super().__init__(message, negate) self.metadata_name = metadata_name self.value = value
[docs] @classmethod def from_element(cls, param, elem): value = elem.get("value", None) or json.loads(elem.get("value_json", "null")) return cls( metadata_name=elem.get("metadata_name", None), value=value, message=elem.get("message", None), negate=elem.get("negate", "false"), )
[docs] def validate(self, value, trans=None): if value: metadata_value = getattr(value.metadata, self.metadata_name) super().validate(metadata_value == self.value, value_to_show=metadata_value)
[docs]class UnspecifiedBuildValidator(Validator): """ Validator that checks for dbkey not equal to '?' """ requires_dataset_metadata = True
[docs] @classmethod def from_element(cls, param, elem): message = elem.get("message") negate = elem.get("negate", "false") if not message: message = f"{'Unspecified' if negate == 'false' else 'Specified'} genome build, click the pencil icon in the history item to {'set' if negate == 'false' else 'remove'} the genome build" return cls(message, negate)
[docs] def validate(self, value, trans=None): # if value is None, we cannot validate if value: dbkey = value.metadata.dbkey # TODO can dbkey really be a list? if isinstance(dbkey, list): dbkey = dbkey[0] super().validate(dbkey != "?")
[docs]class NoOptionsValidator(Validator): """ Validator that checks for empty select list """
[docs] @classmethod def from_element(cls, param, elem): message = elem.get("message") negate = elem.get("negate", "false") if not message: message = f"{'No options' if negate == 'false' else 'Options'} available for selection" return cls(message, negate)
[docs] def validate(self, value, trans=None): super().validate(value is not None)
[docs]class EmptyTextfieldValidator(Validator): """ Validator that checks for empty text field """
[docs] @classmethod def from_element(cls, param, elem): message = elem.get("message") negate = elem.get("negate", "false") if not message: if negate == "false": message = elem.get("message", "Field requires a value") else: message = elem.get("message", "Field must not set a value") return cls(message, negate)
[docs] def validate(self, value, trans=None): super().validate(value != "")
[docs]class MetadataInFileColumnValidator(Validator): """ Validator that checks if the value for a dataset's metadata item exists in a file. Deprecated: DataTables are now the preferred way. note: this is covered in a framework test (validation_dataset_metadata_in_file) """ requires_dataset_metadata = True
[docs] @classmethod def from_element(cls, param, elem): filename = elem.get("filename") assert filename, f"Required 'filename' attribute missing from {elem.get('type')} validator." filename = f"{param.tool.app.config.tool_data_path}/{filename.strip()}" assert os.path.exists(filename), f"File {filename} specified by the 'filename' attribute not found" metadata_name = elem.get("metadata_name") assert metadata_name, f"Required 'metadata_name' attribute missing from {elem.get('type')} validator." metadata_name = metadata_name.strip() metadata_column = int(elem.get("metadata_column", 0)) split = elem.get("split", "\t") message = elem.get("message", f"Value for metadata {metadata_name} was not found in {filename}.") line_startswith = elem.get("line_startswith") if line_startswith: line_startswith = line_startswith.strip() negate = elem.get("negate", "false") return cls(filename, metadata_name, metadata_column, message, line_startswith, split, negate)
[docs] def __init__( self, filename, metadata_name, metadata_column, message="Value for metadata not found.", line_startswith=None, split="\t", negate="false", ): super().__init__(message, negate) self.metadata_name = metadata_name self.valid_values = set() with open(filename) as fh: for line in fh: if line_startswith is None or line.startswith(line_startswith): fields = line.split(split) if metadata_column < len(fields): self.valid_values.add(fields[metadata_column].strip())
[docs] def validate(self, value, trans=None): if not value: return super().validate( value.metadata.spec[self.metadata_name].param.to_string(value.metadata.get(self.metadata_name)) in self.valid_values )
[docs]class ValueInDataTableColumnValidator(Validator): """ Validator that checks if a value is in a tool data table column. note: this is covered in a framework test (validation_value_in_datatable) """
[docs] @classmethod def from_element(cls, param, elem): table_name = elem.get("table_name") assert table_name, f"Required 'table_name' attribute missing from {elem.get('type')} validator." tool_data_table = param.tool.app.tool_data_tables[table_name] column = elem.get("metadata_column", 0) try: column = int(column) except ValueError: pass message = elem.get("message", f"Value was not found in {table_name}.") negate = elem.get("negate", "false") return cls(tool_data_table, column, message, negate)
[docs] def __init__(self, tool_data_table, column, message="Value not found.", negate="false"): super().__init__(message, negate) self.valid_values = [] self._data_table_content_version = None self._tool_data_table = tool_data_table if isinstance(column, str): column = tool_data_table.columns[column] self._column = column self._load_values()
def _load_values(self): self._data_table_content_version, data_fields = self._tool_data_table.get_version_fields() self.valid_values = [] for fields in data_fields: if self._column < len(fields): self.valid_values.append(fields[self._column])
[docs] def validate(self, value, trans=None): if not value: return if not self._tool_data_table.is_current_version(self._data_table_content_version): log.debug( "ValueInDataTableColumnValidator: values are out of sync with data table (%s), updating validator.", self._tool_data_table.name, ) self._load_values() super().validate(value in self.valid_values)
[docs]class ValueNotInDataTableColumnValidator(ValueInDataTableColumnValidator): """ Validator that checks if a value is NOT in a tool data table column. Equivalent to ValueInDataTableColumnValidator with `negate="true"`. note: this is covered in a framework test (validation_value_in_datatable) """
[docs] def __init__(self, tool_data_table, metadata_column, message="Value already present.", negate="false"): super().__init__(tool_data_table, metadata_column, message, negate)
[docs] def validate(self, value, trans=None): try: super().validate(value) except ValueError: return else: raise ValueError(self.message)
[docs]class MetadataInDataTableColumnValidator(ValueInDataTableColumnValidator): """ Validator that checks if the value for a dataset's metadata item exists in a file. note: this is covered in a framework test (validation_metadata_in_datatable) """ requires_dataset_metadata = True
[docs] @classmethod def from_element(cls, param, elem): table_name = elem.get("table_name") assert table_name, f"Required 'table_name' attribute missing from {elem.get('type')} validator." tool_data_table = param.tool.app.tool_data_tables[table_name] metadata_name = elem.get("metadata_name") assert metadata_name, f"Required 'metadata_name' attribute missing from {elem.get('type')} validator." metadata_name = metadata_name.strip() # TODO rename to column? metadata_column = elem.get("metadata_column", 0) try: metadata_column = int(metadata_column) except ValueError: pass message = elem.get("message", f"Value for metadata {metadata_name} was not found in {table_name}.") negate = elem.get("negate", "false") return cls(tool_data_table, metadata_name, metadata_column, message, negate)
[docs] def __init__( self, tool_data_table, metadata_name, metadata_column, message="Value for metadata not found.", negate="false" ): super().__init__(tool_data_table, metadata_column, message, negate) self.metadata_name = metadata_name
[docs] def validate(self, value, trans=None): super().validate( value.metadata.spec[self.metadata_name].param.to_string(value.metadata.get(self.metadata_name)), trans )
[docs]class MetadataNotInDataTableColumnValidator(MetadataInDataTableColumnValidator): """ Validator that checks if the value for a dataset's metadata item doesn't exists in a file. Equivalent to MetadataInDataTableColumnValidator with `negate="true"`. note: this is covered in a framework test (validation_metadata_in_datatable) """ requires_dataset_metadata = True
[docs] def __init__( self, tool_data_table, metadata_name, metadata_column, message="Value for metadata not found.", negate="false" ): super().__init__(tool_data_table, metadata_name, metadata_column, message, negate)
[docs] def validate(self, value, trans=None): try: super().validate(value, trans) except ValueError: return else: raise ValueError(self.message)
[docs]class MetadataInRangeValidator(InRangeValidator): """ validator that ensures metadata is in a specified range note: this is covered in a framework test (validation_metadata_in_range) """ requires_dataset_metadata = True
[docs] @classmethod def from_element(cls, param, elem): metadata_name = elem.get("metadata_name") assert metadata_name, f"Required 'metadata_name' attribute missing from {elem.get('type')} validator." metadata_name = metadata_name.strip() ret = cls( metadata_name, elem.get("message"), elem.get("min"), elem.get("max"), elem.get("exclude_min", "false"), elem.get("exclude_max", "false"), elem.get("negate", "false"), ) ret.message = "Metadata: " + ret.message return ret
[docs] def __init__(self, metadata_name, message, range_min, range_max, exclude_min, exclude_max, negate): self.metadata_name = metadata_name super().__init__(message, range_min, range_max, exclude_min, exclude_max, negate)
[docs] def validate(self, value, trans=None): if value: if not isinstance(value, model.DatasetInstance): raise ValueError("A non-dataset value was provided.") try: value_to_check = float( value.metadata.spec[self.metadata_name].param.to_string(value.metadata.get(self.metadata_name)) ) except KeyError: raise ValueError(f"{self.metadata_name} Metadata missing") except ValueError: raise ValueError(f"{self.metadata_name} must be a float or an integer") super().validate(value_to_check, trans)
validator_types = dict( expression=ExpressionValidator, regex=RegexValidator, in_range=InRangeValidator, length=LengthValidator, metadata=MetadataValidator, dataset_metadata_equal=MetadataEqualValidator, unspecified_build=UnspecifiedBuildValidator, no_options=NoOptionsValidator, empty_field=EmptyTextfieldValidator, empty_dataset=DatasetEmptyValidator, empty_extra_files_path=DatasetExtraFilesPathEmptyValidator, dataset_metadata_in_data_table=MetadataInDataTableColumnValidator, dataset_metadata_not_in_data_table=MetadataNotInDataTableColumnValidator, dataset_metadata_in_range=MetadataInRangeValidator, value_in_data_table=ValueInDataTableColumnValidator, value_not_in_data_table=ValueNotInDataTableColumnValidator, dataset_ok_validator=DatasetOkValidator, ) deprecated_validator_types = dict(dataset_metadata_in_file=MetadataInFileColumnValidator) validator_types.update(deprecated_validator_types)