import contextlib
import io
import json
import os
import re
import shutil
import sys
import tarfile
import tempfile
import time
import urllib.parse
import zipfile
from json import dumps
from logging import getLogger
from typing import (
Any,
Callable,
cast,
Dict,
Generator,
List,
NamedTuple,
Optional,
Union,
)
from packaging.version import Version
from requests import Response
from requests.cookies import RequestsCookieJar
from typing_extensions import (
Literal,
NotRequired,
Protocol,
TypedDict,
)
from galaxy import util
from galaxy.tool_util.parser.interface import (
AssertionList,
TestCollectionDef,
TestCollectionOutputDef,
)
from galaxy.util import requests
from galaxy.util.bunch import Bunch
from galaxy.util.hash_util import (
memory_bound_hexdigest,
parse_checksum_hash,
)
from . import verify
from .asserts import verify_assertions
from .wait import wait_on
log = getLogger(__name__)
# Off by default because it can pound the database pretty heavily
# and result in sqlite errors on larger tests or larger numbers of
# tests.
VERBOSE_ERRORS = util.asbool(os.environ.get("GALAXY_TEST_VERBOSE_ERRORS", False))
UPLOAD_ASYNC = util.asbool(os.environ.get("GALAXY_TEST_UPLOAD_ASYNC", True))
ERROR_MESSAGE_DATASET_SEP = "--------------------------------------"
DEFAULT_TOOL_TEST_WAIT = int(os.environ.get("GALAXY_TEST_DEFAULT_WAIT", 86400))
CLEANUP_TEST_HISTORIES = "GALAXY_TEST_NO_CLEANUP" not in os.environ
DEFAULT_TARGET_HISTORY = os.environ.get("GALAXY_TEST_HISTORY_ID", None)
DEFAULT_FTYPE = "auto"
# This following default dbkey was traditionally hg17 before Galaxy 18.05,
# restore this behavior by setting GALAXY_TEST_DEFAULT_DBKEY to hg17.
DEFAULT_DBKEY = os.environ.get("GALAXY_TEST_DEFAULT_DBKEY", "?")
[docs]class OutputsDict(dict):
"""Ordered dict that can also be accessed by index.
>>> out = OutputsDict()
>>> out['item1'] = 1
>>> out['item2'] = 2
>>> out[1] == 2 == out['item2']
True
"""
def __getitem__(self, item):
if isinstance(item, int):
return self[list(self.keys())[item]]
else:
return super().__getitem__(item)
JobDataT = Dict[str, Any]
JobDataCallbackT = Callable[[JobDataT], None]
ToolTestDict = Union[ValidToolTestDict, InvalidToolTestDict]
ToolTestDictsT = List[ToolTestDict]
[docs]def stage_data_in_history(
galaxy_interactor: "GalaxyInteractorApi",
tool_id: str,
all_test_data,
history=None,
force_path_paste=False,
maxseconds=DEFAULT_TOOL_TEST_WAIT,
tool_version=None,
):
# Upload any needed files
upload_waits = []
assert tool_id
if UPLOAD_ASYNC:
for test_data in all_test_data:
upload_waits.append(
galaxy_interactor.stage_data_async(
test_data,
history,
tool_id,
force_path_paste=force_path_paste,
maxseconds=maxseconds,
tool_version=tool_version,
)
)
for upload_wait in upload_waits:
upload_wait()
else:
for test_data in all_test_data:
upload_wait = galaxy_interactor.stage_data_async(
test_data,
history,
tool_id,
force_path_paste=force_path_paste,
maxseconds=maxseconds,
tool_version=tool_version,
)
upload_wait()
[docs]class GalaxyInteractorApi:
# api_key and cookies can also be manually set by UsesApiTestCaseMixin._different_user()
api_key: Optional[str]
cookies: Optional[RequestsCookieJar]
keep_outputs_dir: Optional[str]
[docs] def __init__(self, **kwds):
self.api_url = f"{kwds['galaxy_url'].rstrip('/')}/api"
self.cookies = None
self.master_api_key = kwds["master_api_key"]
self.api_key = self._get_user_key(
kwds.get("api_key"), kwds.get("master_api_key"), test_user=kwds.get("test_user")
)
if kwds.get("user_api_key_is_admin_key", False):
self.master_api_key = self.api_key
self.keep_outputs_dir = kwds.get("keep_outputs_dir", None)
self.download_attempts = kwds.get("download_attempts", 1)
self.download_sleep = kwds.get("download_sleep", 1)
# Local test data directories.
self.test_data_directories = kwds.get("test_data") or []
self._target_galaxy_version = None
self.uploads = {}
@property
def target_galaxy_version(self):
if self._target_galaxy_version is None:
self._target_galaxy_version = Version(self._get("version").json()["version_major"])
return self._target_galaxy_version
@property
def supports_test_data_download(self):
return self.target_galaxy_version >= Version("19.01")
def _get_user_key(
self, user_key: Optional[str], admin_key: Optional[str], test_user: Optional[str] = None
) -> Optional[str]:
if not test_user:
test_user = "test@bx.psu.edu"
if user_key:
return user_key
test_user_response = self.ensure_user_with_email(test_user)
if not admin_key:
raise Exception("Must specify either a user key or admin key to interact with the Galaxy API")
return self._post(f"users/{test_user_response['id']}/api_key", key=admin_key).json()
[docs] def get_tests_summary(self):
response = self._get("tools/tests_summary")
assert response.status_code == 200, f"Non 200 response from tool tests available API. [{response.content}]"
return response.json()
[docs] def verify_output_collection(
self, output_collection_def, output_collection_id, history, tool_id, tool_version=None
):
data_collection = self._get(
f"dataset_collections/{output_collection_id}", data={"instance_type": "history"}
).json()
def verify_dataset(element, element_attrib, element_outfile):
hda = element["object"]
try:
self.verify_output_dataset(
history,
hda_id=hda["id"],
outfile=element_outfile,
attributes=element_attrib,
tool_id=tool_id,
tool_version=tool_version,
)
except AssertionError as e:
raise AssertionError(
f"Collection element {element.get('element_identifier', '')} of collection {output_collection_def.name}: {e}"
)
verify_collection(output_collection_def, data_collection, verify_dataset)
[docs] def verify_output(self, history_id, jobs, output_data, output_testdef, tool_id, maxseconds, tool_version=None):
outfile = output_testdef.outfile
attributes = output_testdef.attributes
name = output_testdef.name
expected_count = attributes.get("count")
self.wait_for_jobs(history_id, jobs, maxseconds)
hid = self.__output_id(output_data)
# TODO: Twill version verifies dataset is 'ok' in here.
try:
self.verify_output_dataset(
history_id=history_id,
hda_id=hid,
outfile=outfile,
attributes=attributes,
tool_id=tool_id,
tool_version=tool_version,
)
except AssertionError as e:
raise AssertionError(f"Output {name}: {str(e)}")
primary_datasets = attributes.get("primary_datasets", {})
job_id = self._dataset_provenance(history_id, hid)["job_id"]
outputs = self._get(f"jobs/{job_id}/outputs").json()
found_datasets = 0
for output in outputs:
if output["name"] == name or output["name"].startswith(f"__new_primary_file_{name}|"):
found_datasets += 1
if expected_count is not None and expected_count != found_datasets:
raise AssertionError(
f"Output '{name}': expected to have '{expected_count}' datasets, but it had '{found_datasets}'"
)
for designation, (primary_outfile, primary_attributes) in primary_datasets.items():
primary_output = None
for output in outputs:
if output["name"] == f"__new_primary_file_{name}|{designation}__":
primary_output = output
break
if not primary_output:
raise Exception(
f"Failed to find primary dataset with designation [{designation}] for output with name [{name}]"
)
primary_hda_id = primary_output["dataset"]["id"]
try:
self.verify_output_dataset(
history_id,
primary_hda_id,
primary_outfile,
primary_attributes,
tool_id=tool_id,
tool_version=tool_version,
)
except AssertionError as e:
raise AssertionError(f"Primary output {name}: {str(e)}")
[docs] def wait_for_jobs(self, history_id, jobs, maxseconds):
for job in jobs:
self.wait_for_job(job["id"], history_id, maxseconds)
[docs] def verify_output_dataset(self, history_id, hda_id, outfile, attributes, tool_id, tool_version=None):
fetcher = self.__dataset_fetcher(history_id)
test_data_downloader = self.__test_data_downloader(tool_id, tool_version, attributes)
verify_hid(
outfile,
hda_id=hda_id,
attributes=attributes,
dataset_fetcher=fetcher,
test_data_downloader=test_data_downloader,
keep_outputs_dir=self.keep_outputs_dir,
)
self._verify_metadata(history_id, hda_id, attributes)
def _verify_metadata(self, history_id, hid, attributes):
"""Check dataset metadata.
ftype on output maps to `file_ext` on the hda's API description, `name`, `info`,
`dbkey` and `tags` all map to the API description directly. Other metadata attributes
are assumed to be datatype-specific and mapped with a prefix of `metadata_`.
"""
metadata = attributes.get("metadata", {}).copy()
for key in metadata.copy().keys():
if key not in ["name", "info", "tags", "created_from_basename"]:
new_key = f"metadata_{key}"
metadata[new_key] = metadata[key]
del metadata[key]
elif key == "info":
metadata["misc_info"] = metadata["info"]
del metadata["info"]
expected_file_type = attributes.get("ftype", None)
if expected_file_type:
metadata["file_ext"] = expected_file_type
if metadata:
def wait_for_content():
response = self._get(f"histories/{history_id}/contents/{hid}")
try:
response.raise_for_status()
return response.json()
except requests.exceptions.HTTPError:
return None
dataset = wait_on(wait_for_content, desc="dataset metadata", timeout=10)
for key, value in metadata.items():
try:
dataset_value = dataset.get(key, None)
def compare(val, expected):
if str(val) != str(expected):
raise Exception(
f"Dataset metadata verification for [{key}] failed, expected [{value}] but found [{dataset_value}]. Dataset API value was [{dataset}]." # noqa: B023
)
if isinstance(dataset_value, list):
value = str(value).split(",")
if len(value) != len(dataset_value):
raise Exception(
f"Dataset metadata verification for [{key}] failed, expected [{value}] but found [{dataset_value}], lists differ in length. Dataset API value was [{dataset}]."
)
for val, expected in zip(dataset_value, value):
compare(val, expected)
else:
compare(dataset_value, value)
except KeyError:
raise Exception(f"Failed to verify dataset metadata, metadata key [{key}] was not found.")
[docs] def wait_for_job(self, job_id: str, history_id: Optional[str] = None, maxseconds=DEFAULT_TOOL_TEST_WAIT) -> None:
self.wait_for(lambda: self.__job_ready(job_id, history_id), maxseconds=maxseconds)
[docs] def wait_for(self, func: Callable, what: str = "tool test run", **kwd) -> None:
walltime_exceeded = int(kwd.get("maxseconds", DEFAULT_TOOL_TEST_WAIT))
wait_on(func, what, walltime_exceeded)
[docs] def get_job_stdio(self, job_id: str) -> Dict[str, Any]:
return self.__get_job_stdio(job_id).json()
def __get_job(self, job_id: str) -> Response:
return self._get(f"jobs/{job_id}")
def __get_job_stdio(self, job_id: str) -> Response:
return self._get(f"jobs/{job_id}?full=true")
[docs] def get_history(self, history_name: str = "test_history") -> Optional[Dict[str, Any]]:
# Return the most recent non-deleted history matching the provided name
filters = urllib.parse.urlencode({"q": "name", "qv": history_name, "order": "update_time"})
response = self._get(f"histories?{filters}")
try:
return response.json()[-1]
except IndexError:
return None
[docs] @contextlib.contextmanager
def test_history(
self, require_new: bool = True, cleanup_callback: Optional[Callable[[str], None]] = None
) -> Generator[str, None, None]:
history_id = None
if not require_new:
history_id = DEFAULT_TARGET_HISTORY
cleanup = CLEANUP_TEST_HISTORIES
history_id = history_id or self.new_history()
try:
yield history_id
except Exception:
self._summarize_history(history_id)
raise
finally:
if cleanup and cleanup_callback is not None:
cleanup_callback(history_id)
[docs] def new_history(self, history_name: str = "test_history", publish_history: bool = False) -> str:
create_response = self._post("histories", {"name": history_name})
try:
create_response.raise_for_status()
except Exception as e:
raise Exception(f"Error occurred while creating history with name '{history_name}': {e}")
history_id = create_response.json()["id"]
if publish_history:
self.publish_history(history_id)
return history_id
[docs] def publish_history(self, history_id: str) -> None:
response = self._put(f"histories/{history_id}", json.dumps({"published": True}))
response.raise_for_status()
[docs] def test_data_path(self, tool_id, filename, tool_version=None):
version_fragment = f"&tool_version={tool_version}" if tool_version else ""
response = self._get(f"tools/{tool_id}/test_data_path?filename={filename}{version_fragment}", admin=True)
result = response.json()
if response.status_code in [200, 404]:
return result
raise Exception(result["err_msg"])
[docs] def test_data_download(self, tool_id, filename, mode="file", is_output=True, tool_version=None):
result = None
local_path = None
if self.supports_test_data_download:
version_fragment = f"&tool_version={tool_version}" if tool_version else ""
response = self._get(f"tools/{tool_id}/test_data_download?filename={filename}{version_fragment}")
if response.status_code == 200:
if mode == "file":
result = response.content
elif mode == "directory":
prefix = os.path.basename(filename)
path = tempfile.mkdtemp(prefix=prefix)
fileobj = io.BytesIO(response.content)
if zipfile.is_zipfile(fileobj):
with zipfile.ZipFile(fileobj) as contents:
contents.extractall(path=path)
else:
# Galaxy < 21.01
with tarfile.open(fileobj=fileobj) as tar_contents:
tar_contents.extractall(path=path)
result = path
else:
# We can only use local data
local_path = self.test_data_path(tool_id, filename, tool_version=tool_version)
if result is None and (local_path is None or not os.path.exists(local_path)):
local_path = self._find_in_test_data_directories(filename)
if result is None and local_path is not None and os.path.exists(local_path):
if mode == "file":
with open(local_path, mode="rb") as f:
result = f.read()
elif mode == "directory":
# Make a copy, since we are going to clean up the returned path
path = tempfile.mkdtemp()
shutil.copytree(local_path, path)
result = path
if result is None:
if is_output:
raise AssertionError(
f"Test output file ({filename}) is missing. If you are using planemo, try adding --update_test_data to generate it."
)
else:
raise AssertionError(f"Test input file ({filename}) cannot be found.")
return result
def _find_in_test_data_directories(self, filename: str) -> Optional[str]:
local_path = None
for test_data_directory in self.test_data_directories:
local_path = os.path.join(test_data_directory, filename)
if os.path.exists(local_path):
break
return local_path
def __output_id(self, output_data):
# Allow data structure coming out of tools API - {id: <id>, output_name: <name>, etc...}
# or simple id as comes out of workflow API.
try:
output_id = output_data.get("id")
except AttributeError:
output_id = output_data
return output_id
[docs] def stage_data_async(
self,
test_data: Dict[str, Any],
history_id: str,
tool_id: str,
force_path_paste: bool = False,
maxseconds: int = DEFAULT_TOOL_TEST_WAIT,
tool_version: Optional[str] = None,
) -> Callable[[], None]:
fname = test_data["fname"]
tool_input = {
"file_type": test_data["ftype"],
"dbkey": test_data["dbkey"],
}
metadata = test_data.get("metadata", {})
if not hasattr(metadata, "items"):
raise Exception(f"Invalid metadata description found for input [{fname}] - [{metadata}]")
for name, value in test_data.get("metadata", {}).items():
tool_input[f"files_metadata|{name}"] = value
composite_data = test_data["composite_data"]
if composite_data:
files = {}
for i, file_name in enumerate(composite_data):
if force_path_paste:
file_path = self.test_data_path(tool_id, file_name, tool_version=tool_version)
tool_input.update({f"files_{i}|url_paste": f"file://{file_path}"})
else:
file_content = self.test_data_download(
tool_id, file_name, is_output=False, tool_version=tool_version
)
files[f"files_{i}|file_data"] = file_content
tool_input.update(
{
f"files_{i}|type": "upload_dataset",
}
)
name = test_data["name"]
else:
file_name = None
file_name_exists = False
location = self._ensure_valid_location_in(test_data)
if fname and force_path_paste:
file_name = self.test_data_path(tool_id, fname, tool_version=tool_version)
file_name_exists = os.path.exists(f"{file_name}")
upload_from_location = not file_name_exists and location is not None
name = os.path.basename(location if upload_from_location else fname)
tool_input.update(
{
"files_0|NAME": name,
"files_0|type": "upload_dataset",
}
)
files = {}
if upload_from_location:
tool_input.update({"files_0|url_paste": location})
elif force_path_paste:
if file_name is None:
file_name = self.test_data_path(tool_id, fname, tool_version=tool_version)
tool_input.update({"files_0|url_paste": f"file://{file_name}"})
else:
file_content = self.test_data_download(tool_id, fname, is_output=False, tool_version=tool_version)
files = {"files_0|file_data": file_content}
submit_response_object = self.__submit_tool(
history_id, "upload1", tool_input, extra_data={"type": "upload_dataset"}, files=files
)
submit_response = ensure_tool_run_response_okay(submit_response_object, f"upload dataset {name}")
assert (
"outputs" in submit_response
), f"Invalid response from server [{submit_response}], expecting outputs in response."
outputs = submit_response["outputs"]
assert len(outputs) > 0, f"Invalid response from server [{submit_response}], expecting an output dataset."
dataset = outputs[0]
hid = dataset["id"]
self.uploads[os.path.basename(fname)] = self.uploads[fname] = self.uploads[name] = {"src": "hda", "id": hid}
assert (
"jobs" in submit_response
), f"Invalid response from server [{submit_response}], expecting jobs in response."
jobs = submit_response["jobs"]
assert len(jobs) > 0, f"Invalid response from server [{submit_response}], expecting a job."
return lambda: self.wait_for_job(jobs[0]["id"], history_id, maxseconds=maxseconds)
def _ensure_valid_location_in(self, test_data: dict) -> Optional[str]:
location: Optional[str] = test_data.get("location")
has_valid_location = location and util.is_url(location)
if location and not has_valid_location:
raise ValueError(f"Invalid `location` URL: `{location}`")
return location
def _create_collection(self, history_id, collection_def):
create_payload = dict(
name=collection_def.name,
element_identifiers=self._element_identifiers(collection_def),
collection_type=collection_def.collection_type,
history_id=history_id,
)
return self._post("dataset_collections", data=create_payload, json=True).json()["id"]
def _element_identifiers(self, collection_def):
element_identifiers = []
for element_dict in collection_def.elements:
element_identifier = element_dict["element_identifier"]
element_def = element_dict["element_definition"]
if isinstance(element_def, TestCollectionDef):
subelement_identifiers = self._element_identifiers(element_def)
element = dict(
name=element_identifier,
src="new_collection",
collection_type=element_def.collection_type,
element_identifiers=subelement_identifiers,
)
else:
element = self.uploads[element_def["value"]].copy()
element["name"] = element_identifier
tags = element_def.get("attributes").get("tags")
if tags:
element["tags"] = tags.split(",")
element_identifiers.append(element)
return element_identifiers
def __dictify_output_collections(self, submit_response) -> Dict[str, Any]:
output_collections_dict = {}
for output_collection in submit_response["output_collections"]:
output_collections_dict[output_collection["output_name"]] = output_collection
return output_collections_dict
def __dictify_outputs(self, datasets_object) -> OutputsDict:
# Convert outputs list to a dictionary that can be accessed by
# output_name so can be more flexible about ordering of outputs
# but also allows fallback to legacy access as list mode.
outputs_dict = OutputsDict()
for output in datasets_object["outputs"]:
outputs_dict[output.get("output_name")] = output
return outputs_dict
[docs] def output_hid(self, output_data):
return output_data["id"]
[docs] def delete_history(self, history: str) -> None:
self._delete(f"histories/{history}")
def __job_ready(self, job_id: str, history_id: Optional[str] = None):
if job_id is None:
raise ValueError("__job_ready passed empty job_id")
try:
return self._state_ready(job_id, error_msg="Job in error state.")
except Exception:
if VERBOSE_ERRORS and history_id is not None:
self._summarize_history(history_id)
raise
def _summarize_history(self, history_id: str):
if history_id is None:
raise ValueError("_summarize_history passed empty history_id")
print(f"Problem in history with id {history_id} - summary of history's datasets and jobs below.")
try:
history_contents = self.__contents(history_id)
except Exception:
print("*TEST FRAMEWORK FAILED TO FETCH HISTORY DETAILS*")
return
for history_content in history_contents:
dataset = history_content
print(ERROR_MESSAGE_DATASET_SEP)
dataset_id = dataset.get("id", None)
print(f"| {dataset['hid']} - {dataset['name']} (HID - NAME) ")
if history_content["history_content_type"] == "dataset_collection":
history_contents_json = self._get(
f"histories/{history_id}/contents/dataset_collections/{history_content['id']}"
).json()
print(f"| Dataset Collection: {history_contents_json}")
print("|")
continue
try:
dataset_info = self._dataset_info(history_id, dataset_id)
print("| Dataset State:")
print(self.format_for_summary(dataset_info.get("state"), "Dataset state is unknown."))
print("| Dataset Blurb:")
print(self.format_for_summary(dataset_info.get("misc_blurb", ""), "Dataset blurb was empty."))
print("| Dataset Info:")
print(self.format_for_summary(dataset_info.get("misc_info", ""), "Dataset info is empty."))
print("| Peek:")
print(self.format_for_summary(dataset_info.get("peek", ""), "Peek unavailable."))
except Exception:
print("| *TEST FRAMEWORK ERROR FETCHING DATASET DETAILS*")
try:
provenance_info = self._dataset_provenance(history_id, dataset_id)
print("| Dataset Job Standard Output:")
print(self.format_for_summary(provenance_info.get("stdout", ""), "Standard output was empty."))
print("| Dataset Job Standard Error:")
print(self.format_for_summary(provenance_info.get("stderr", ""), "Standard error was empty."))
except Exception:
print("| *TEST FRAMEWORK ERROR FETCHING JOB DETAILS*")
print("|")
try:
jobs_json = self._get(f"jobs?history_id={history_id}").json()
for job_json in jobs_json:
print(ERROR_MESSAGE_DATASET_SEP)
print(f"| Job {job_json['id']}")
print("| State: ")
print(self.format_for_summary(job_json.get("state", ""), "Job state is unknown."))
print("| Update Time:")
print(self.format_for_summary(job_json.get("update_time", ""), "Job update time is unknown."))
print("| Create Time:")
print(self.format_for_summary(job_json.get("create_time", ""), "Job create time is unknown."))
print("|")
print(ERROR_MESSAGE_DATASET_SEP)
except Exception:
print(ERROR_MESSAGE_DATASET_SEP)
print("*TEST FRAMEWORK FAILED TO FETCH HISTORY JOBS*")
print(ERROR_MESSAGE_DATASET_SEP)
def _dataset_provenance(self, history_id, id):
provenance = self._get(f"histories/{history_id}/contents/{id}/provenance").json()
return provenance
def _dataset_info(self, history_id, id):
dataset_json = self._get(f"histories/{history_id}/contents/{id}").json()
return dataset_json
def __contents(self, history_id):
history_contents_response = self._get(f"histories/{history_id}/contents")
history_contents_response.raise_for_status()
return history_contents_response.json()
def _state_ready(self, job_id: str, error_msg: str):
state_str = self.__get_job(job_id).json()["state"]
if state_str == "ok":
return True
elif state_str == "error":
job_json = self.get_job_stdio(job_id)
raise Exception(
f"{error_msg}. tool_id: {job_json['tool_id']}, exit_code: {job_json['exit_code']}, stderr: {job_json['stderr']}."
)
return None
def __submit_tool(self, history_id, tool_id, tool_input, extra_data=None, files=None, tool_version=None):
extra_data = extra_data or {}
data = dict(
history_id=history_id, tool_id=tool_id, inputs=dumps(tool_input), tool_version=tool_version, **extra_data
)
return self._post("tools", files=files, data=data)
[docs] def ensure_user_with_email(self, email, password=None):
admin_key = self.master_api_key
all_users_response = self._get("users", key=admin_key)
try:
all_users_response.raise_for_status()
except requests.exceptions.HTTPError as e:
raise Exception(
f"Failed to verify user with email [{email}] exists - perhaps you're targetting the wrong Galaxy server or using an incorrect admin API key. HTTP error: {e}"
)
all_users = all_users_response.json()
try:
test_user = [user for user in all_users if user["email"] == email][0]
except IndexError:
username = re.sub(r"[^a-z-\d]", "--", email.lower())
password = password or "testpass"
# If remote user middleware is enabled - this endpoint consumes
# ``remote_user_email`` otherwise it requires ``email``, ``password``
# and ``username``.
data = dict(
remote_user_email=email,
email=email,
password=password,
username=username,
)
test_user = self._post("users", data, key=admin_key, json=True).json()
return test_user
def __test_data_downloader(self, tool_id, tool_version=None, attributes: Optional[dict] = None):
location = None
checksum = attributes.get("checksum") if attributes else None
def test_data_download_from_galaxy(filename, mode="file"):
return self.test_data_download(tool_id, filename, mode=mode, tool_version=tool_version)
def test_data_download_from_location(filename: str):
# try to find the file in the test data directories first
local_path = self._find_in_test_data_directories(filename)
if local_path and os.path.exists(local_path):
with open(local_path, mode="rb") as f:
return f.read()
# if not found, try to download it from the location to the test data directory
# to be reused in subsequent tests
if local_path:
util.download_to_file(location, local_path)
self._verify_checksum(local_path, checksum)
with open(local_path, mode="rb") as f:
return f.read()
# otherwise, download it to a temporary file
with tempfile.NamedTemporaryFile() as file_handle:
util.download_to_file(location, file_handle.name)
self._verify_checksum(file_handle.name, checksum)
return file_handle.file.read()
if attributes:
location = self._ensure_valid_location_in(attributes)
if location:
return test_data_download_from_location
return test_data_download_from_galaxy
def _verify_checksum(self, file_path: str, checksum: Optional[str] = None):
if checksum is None:
return
hash_function, expected_hash_value = parse_checksum_hash(checksum)
calculated_hash_value = memory_bound_hexdigest(hash_func_name=hash_function, path=file_path)
if calculated_hash_value != expected_hash_value:
raise AssertionError(
f"Failed to verify checksum with [{hash_function}] - expected [{expected_hash_value}] got [{calculated_hash_value}]"
)
def __dataset_fetcher(self, history_id):
def fetcher(hda_id, base_name=None):
url = f"histories/{history_id}/contents/{hda_id}/display?raw=true"
if base_name:
url += f"&filename={base_name}"
response = None
for _ in range(self.download_attempts):
response = self._get(url)
if response.status_code == 500:
print(f"Retrying failed download with status code {response.status_code}")
time.sleep(self.download_sleep)
continue
else:
break
assert response
response.raise_for_status()
return response.content
return fetcher
def _post(
self,
path: str,
data: Optional[Dict[str, Any]] = None,
files: Optional[Dict[str, Any]] = None,
key: Optional[str] = None,
headers: Optional[Dict[str, Optional[str]]] = None,
admin: bool = False,
anon: bool = False,
json: bool = False,
) -> Response:
headers = self.api_key_header(key=key, admin=admin, anon=anon, headers=headers)
url = self.get_api_url(path)
kwd = self._prepare_request_params(data=data, files=files, as_json=json, headers=headers)
kwd["timeout"] = kwd.pop("timeout", util.DEFAULT_SOCKET_TIMEOUT)
return requests.post(url, **kwd)
def _delete(self, path, data=None, key=None, headers=None, admin=False, anon=False, json=False, params=None):
headers = self.api_key_header(key=key, admin=admin, anon=anon, headers=headers)
url = self.get_api_url(path)
kwd = self._prepare_request_params(data=data, as_json=json, params=params, headers=headers)
kwd["timeout"] = kwd.pop("timeout", util.DEFAULT_SOCKET_TIMEOUT)
return requests.delete(url, **kwd)
def _patch(self, path, data=None, key=None, headers=None, admin=False, anon=False, json=False):
headers = self.api_key_header(key=key, admin=admin, anon=anon, headers=headers)
url = self.get_api_url(path)
kwd = self._prepare_request_params(data=data, as_json=json, headers=headers)
kwd["timeout"] = kwd.pop("timeout", util.DEFAULT_SOCKET_TIMEOUT)
return requests.patch(url, **kwd)
def _put(self, path, data=None, key=None, headers=None, admin=False, anon=False, json=False):
headers = self.api_key_header(key=key, admin=admin, anon=anon, headers=headers)
url = self.get_api_url(path)
kwd = self._prepare_request_params(data=data, as_json=json, headers=headers)
kwd["timeout"] = kwd.pop("timeout", util.DEFAULT_SOCKET_TIMEOUT)
return requests.put(url, **kwd)
def _get(self, path, data=None, key=None, headers=None, admin=False, anon=False, allow_redirects=True):
headers = self.api_key_header(key=key, admin=admin, anon=anon, headers=headers)
url = self.get_api_url(path)
kwargs: Dict[str, Any] = {}
if self.cookies:
kwargs["cookies"] = self.cookies
# no data for GET
return requests.get(
url,
params=data,
headers=headers,
timeout=util.DEFAULT_SOCKET_TIMEOUT,
allow_redirects=allow_redirects,
**kwargs,
)
def _head(self, path, data=None, key=None, headers=None, admin=False, anon=False):
headers = self.api_key_header(key=key, admin=admin, anon=anon, headers=headers)
url = self.get_api_url(path)
kwargs: Dict[str, Any] = {}
if self.cookies:
kwargs["cookies"] = self.cookies
# no data for HEAD
return requests.head(url, params=data, headers=headers, timeout=util.DEFAULT_SOCKET_TIMEOUT, **kwargs)
[docs] def get_api_url(self, path: str) -> str:
if path.startswith("http"):
return path
elif path.startswith("/api/"):
path = path[len("/api/") :]
return urllib.parse.urljoin(f"{self.api_url}/", path)
def _prepare_request_params(
self,
data: Optional[Dict[str, Any]] = None,
files: Optional[Dict[str, Any]] = None,
as_json: bool = False,
params: Optional[Dict[str, Any]] = None,
headers: Optional[Dict[str, Optional[str]]] = None,
) -> Dict[str, Any]:
"""Handle some Galaxy conventions and work around requests issues.
This is admittedly kind of hacky, so the interface may change frequently - be
careful on reuse.
If ``as_json`` is True, use post payload using request's json parameter instead
of the data parameter (i.e. assume the contents is a json-ified blob instead of
form parameters with individual parameters json-ified if needed). requests doesn't
allow files to be specified with the json parameter - so rewrite the parameters
to handle that if as_json is True with specified files.
"""
return prepare_request_params(
data=data, files=files, as_json=as_json, params=params, headers=headers, cookies=self.cookies
)
[docs]def prepare_request_params(
data: Optional[Dict[str, Any]] = None,
files: Optional[Dict[str, Any]] = None,
as_json: bool = False,
params: Optional[Dict[str, Any]] = None,
headers: Optional[Dict[str, Optional[str]]] = None,
cookies: Optional[RequestsCookieJar] = None,
) -> Dict[str, Any]:
params = params or {}
data = data or {}
# handle encoded files
if files is None:
# if not explicitly passed, check __files... convention used in tool testing
# and API testing code
files = data.get("__files")
if files is not None:
del data["__files"]
# files doesn't really work with json, so dump the parameters
# and do a normal POST with request's data parameter.
if files and as_json:
as_json = False
new_items = {}
for key, val in data.items():
if isinstance(val, dict) or isinstance(val, list):
new_items[key] = dumps(val)
data.update(new_items)
kwd = {
"files": files,
}
if headers:
kwd["headers"] = headers
if as_json:
kwd["json"] = data or None
kwd["params"] = params
else:
data.update(params)
kwd["data"] = data
if cookies:
kwd["cookies"] = cookies
return kwd
def _are_tool_inputs_not_ready(submit_response):
if submit_response.status_code != 400:
return False
try:
submit_json = submit_response.json()
return submit_json.get("err_code") == 400015
except Exception:
return False
# Galaxy specific methods - rest of this can be used with arbitrary files and such.
[docs]def verify_hid(
filename: Optional[str],
hda_id: str,
attributes: Dict[str, Any],
test_data_downloader,
dataset_fetcher=None,
keep_outputs_dir: Optional[str] = None,
):
assert dataset_fetcher is not None
def verify_extra_files(extra_files):
_verify_extra_files_content(
extra_files,
hda_id,
dataset_fetcher=dataset_fetcher,
test_data_downloader=test_data_downloader,
keep_outputs_dir=keep_outputs_dir,
)
data = dataset_fetcher(hda_id)
item_label = ""
verify(
item_label,
data,
attributes=attributes,
filename=filename,
get_filecontent=test_data_downloader,
keep_outputs_dir=keep_outputs_dir,
verify_extra_files=verify_extra_files,
)
[docs]def verify_collection(output_collection_def, data_collection, verify_dataset):
name = output_collection_def.name
expected_collection_type = output_collection_def.collection_type
if expected_collection_type:
collection_type = data_collection["collection_type"]
if expected_collection_type != collection_type:
message = f"Output collection '{name}': expected to be of type [{expected_collection_type}], was of type [{collection_type}]."
raise AssertionError(message)
expected_element_count = output_collection_def.count
if expected_element_count:
actual_element_count = len(data_collection["elements"])
if expected_element_count != actual_element_count:
message = f"Output collection '{name}': expected to have {expected_element_count} elements, but it had {actual_element_count}."
raise AssertionError(message)
def get_element(elements, id):
for element in elements:
if element["element_identifier"] == id:
return element
return False
def verify_elements(element_objects, element_tests):
expected_sort_order = {}
eo_ids = [_["element_identifier"] for _ in element_objects]
for element_identifier, element_test in element_tests.items():
if isinstance(element_test, dict):
element_outfile, element_attrib = None, element_test
else:
element_outfile, element_attrib = element_test
expected_count = element_attrib.get("count")
if "expected_sort_order" in element_attrib:
expected_sort_order[element_attrib["expected_sort_order"]] = element_identifier
element = get_element(element_objects, element_identifier)
if not element:
message = f"Output collection '{name}': failed to find identifier '{element_identifier}' in the tool generated elements {eo_ids}"
raise AssertionError(message)
element_type = element["element_type"]
if element_type != "dataset_collection":
element_count = 1
verify_dataset(element, element_attrib, element_outfile)
else:
elements = element["object"]["elements"]
element_count = len(elements)
verify_elements(elements, element_attrib.get("elements", {}))
if expected_count is not None and expected_count != element_count:
raise AssertionError(
f"Element '{element_identifier}': expected to have {expected_count} elements, but it had {element_count}"
)
if len(expected_sort_order) > 0:
generated_sort_order = [_["element_identifier"] for _ in element_objects]
i = 0
for element_index in sorted(expected_sort_order.keys()):
identifier = expected_sort_order[element_index]
try:
i = generated_sort_order[i:].index(identifier) + 1
except ValueError:
message = f"Output collection '{name}': identifier '{identifier}' found out of order, expected order of {expected_sort_order} for the tool generated collection elements {eo_ids}"
raise AssertionError(message)
verify_elements(data_collection["elements"], output_collection_def.element_tests)
def _verify_composite_datatype_file_content(
file_name,
hda_id,
base_name=None,
attributes=None,
dataset_fetcher=None,
test_data_downloader=None,
keep_outputs_dir: Optional[str] = None,
mode="file",
):
assert dataset_fetcher is not None
data = dataset_fetcher(hda_id, base_name)
item_label = f"History item {hda_id}"
try:
verify(
item_label,
data,
attributes=attributes,
filename=file_name,
get_filecontent=test_data_downloader,
keep_outputs_dir=keep_outputs_dir,
mode=mode,
)
except AssertionError as err:
errmsg = f"Composite file ({base_name}) of {item_label} different than expected, difference:\n"
errmsg += util.unicodify(err)
raise AssertionError(errmsg)
def _verify_extra_files_content(
extra_files: List[Dict[str, Any]], hda_id: str, dataset_fetcher, test_data_downloader, keep_outputs_dir
):
files_list = []
cleanup_directories = []
for extra_file_dict in extra_files:
extra_file_type = extra_file_dict["type"]
extra_file_name = extra_file_dict["name"]
extra_file_attributes = extra_file_dict["attributes"]
extra_file_value = extra_file_dict["value"]
if extra_file_type == "file":
files_list.append((extra_file_name, extra_file_value, extra_file_attributes, extra_file_type))
elif extra_file_type == "directory":
extracted_path = test_data_downloader(extra_file_value, mode="directory")
cleanup_directories.append(extracted_path)
for root, _directories, files in util.path.safe_walk(extracted_path):
for filename in files:
filename = os.path.join(root, filename)
filename = os.path.relpath(filename, extracted_path)
files_list.append(
(filename, os.path.join(extracted_path, filename), extra_file_attributes, extra_file_type)
)
else:
raise ValueError(f"unknown extra_files type: {extra_file_type}")
try:
for filename, filepath, attributes, extra_file_type in files_list:
_verify_composite_datatype_file_content(
filepath,
hda_id,
base_name=filename,
attributes=attributes,
dataset_fetcher=dataset_fetcher,
test_data_downloader=test_data_downloader,
keep_outputs_dir=keep_outputs_dir,
mode=extra_file_type,
)
finally:
for path in cleanup_directories:
shutil.rmtree(path)
[docs]class TestConfig(Protocol):
[docs] def get_test_config(self, job_data: Dict[str, Any]) -> Optional[Dict[str, Any]]: ...
[docs]class NullClientTestConfig(TestConfig):
[docs] def get_test_config(self, job_data):
return None
[docs]class DictClientTestConfig(TestConfig):
[docs] def __init__(self, tools):
self._tools = tools or {}
[docs] def get_test_config(self, job_data):
# TODO: allow short ids, allow versions below outer id instead of key concatenation.
tool_id = job_data.get("tool_id")
tool_version = job_data.get("tool_version")
tool_test_config = None
tool_version_test_config = None
is_default = False
if tool_id in self._tools:
tool_test_config = self._tools[tool_id]
if tool_test_config is None:
tool_id = f"{tool_id}/{tool_version}"
if tool_id in self._tools:
tool_version_test_config = self._tools[tool_id]
else:
if tool_version in tool_test_config:
tool_version_test_config = tool_test_config[tool_version]
elif "default" in tool_test_config:
tool_version_test_config = tool_test_config["default"]
is_default = True
if tool_version_test_config:
test_index = job_data.get("test_index")
if test_index in tool_version_test_config:
return tool_version_test_config[test_index]
elif str(test_index) in tool_version_test_config:
return tool_version_test_config[str(test_index)]
if "default" in tool_version_test_config:
return tool_version_test_config["default"]
elif is_default:
return tool_version_test_config
return None
def _handle_def_errors(testdef):
# If the test generation had an error, raise
if testdef.error:
if testdef.exception:
if isinstance(testdef.exception, Exception):
raise testdef.exception
else:
raise Exception(testdef.exception)
else:
raise Exception("Test parse failure")
def _verify_outputs(testdef, history, jobs, data_list, data_collection_list, galaxy_interactor, quiet=False):
assert len(jobs) == 1, "Test framework logic error, somehow tool test resulted in more than one job."
job = jobs[0]
found_exceptions: List[Exception] = []
def register_exception(e: Exception):
if not found_exceptions and not quiet:
# Only print this stuff out once.
for stream in ["stdout", "stderr"]:
if stream in job_stdio:
print(_format_stream(job_stdio[stream], stream=stream, format=True), file=sys.stderr)
found_exceptions.append(e)
if testdef.expect_failure:
if testdef.outputs:
raise Exception("Cannot specify outputs in a test expecting failure.")
maxseconds = testdef.maxseconds
# Wait for the job to complete and register expections if the final
# status was not what test was expecting.
job_failed = False
try:
galaxy_interactor.wait_for_job(job["id"], history, maxseconds)
except Exception as e:
job_failed = True
if not testdef.expect_failure:
found_exceptions.append(e)
job_stdio = galaxy_interactor.get_job_stdio(job["id"])
if testdef.num_outputs is not None:
expected = testdef.num_outputs
actual = len(data_list) + len(data_collection_list)
if expected != actual:
message = f"Incorrect number of outputs - expected {expected}, found {actual} (dataset(s): {','.join(data_list.keys())} collection(s): {' '.join(data_collection_list.keys())})"
error = AssertionError(message)
register_exception(error)
if not job_failed and testdef.expect_failure:
error = AssertionError("Expected job to fail but Galaxy indicated the job successfully completed.")
register_exception(error)
expect_exit_code = testdef.expect_exit_code
if expect_exit_code is not None:
exit_code = job_stdio["exit_code"]
if str(expect_exit_code) != str(exit_code):
error = AssertionError(f"Expected job to complete with exit code {expect_exit_code}, found {exit_code}")
register_exception(error)
for output_index, output_dict in enumerate(testdef.outputs):
# Get the correct hid
name = output_dict["name"]
outfile = output_dict["value"]
attributes = output_dict["attributes"]
output_testdef = Bunch(name=name, outfile=outfile, attributes=attributes)
output_data = None
try:
output_data = data_list[name]
except (TypeError, KeyError):
# Legacy - fall back on ordered data list access if data_list is
# just a list (case with twill variant or if output changes its
# name).
try:
if hasattr(data_list, "values"):
output_data = list(data_list.values())[output_index]
else:
output_data = data_list[len(data_list) - len(testdef.outputs) + output_index]
except IndexError:
error = AssertionError(
f"Tool did not produce an output with name '{name}' (or at index {output_index})"
)
register_exception(error)
if output_data:
try:
galaxy_interactor.verify_output(
history,
jobs,
output_data,
output_testdef=output_testdef,
tool_id=job["tool_id"],
maxseconds=maxseconds,
tool_version=testdef.tool_version,
)
except Exception as e:
register_exception(e)
other_checks = {
"command_line": "Command produced by the job",
"command_version": "Tool version indicated during job execution",
"stdout": "Standard output of the job",
"stderr": "Standard error of the job",
}
# TODO: Only hack the stdio like this for older profile, for newer tool profiles
# add some syntax for asserting job messages maybe - or just drop this because exit
# code and regex on stdio can be tested directly - so this is really testing Galaxy
# core handling more than the tool.
job_messages = job_stdio.get("job_messages") or []
stdout_prefix = ""
stderr_prefix = ""
for job_message in job_messages:
message_type = job_message.get("type")
if message_type == "regex" and job_message.get("stream") == "stderr":
stderr_prefix += f"{job_message.get('desc') or ''}\n"
elif message_type == "regex" and job_message.get("stream") == "stdout":
stdout_prefix += f"{job_message.get('desc') or ''}\n"
elif message_type == "exit_code":
stderr_prefix += f"{job_message.get('desc') or ''}\n"
else:
raise Exception(f"Unknown job message type [{message_type}] in [{job_message}]")
for what, description in other_checks.items():
if getattr(testdef, what, None) is not None:
try:
raw_data = job_stdio[what]
assertions = getattr(testdef, what)
if what == "stdout":
data = stdout_prefix + raw_data
elif what == "stderr":
data = stderr_prefix + raw_data
else:
data = raw_data
verify_assertions(data, assertions)
except AssertionError as err:
errmsg = f"{description} different than expected\n"
errmsg += util.unicodify(err)
register_exception(AssertionError(errmsg))
for output_collection_def in testdef.output_collections:
try:
name = output_collection_def.name
# TODO: data_collection_list is clearly a bad name for dictionary.
if name not in data_collection_list:
message = (
f"Failed to find output [{name}], tool outputs include [{','.join(data_collection_list.keys())}]"
)
raise AssertionError(message)
# Data collection returned from submission, elements may have been populated after
# the job completed so re-hit the API for more information.
data_collection_id = data_collection_list[name]["id"]
galaxy_interactor.verify_output_collection(
output_collection_def, data_collection_id, history, job["tool_id"]
)
except Exception as e:
register_exception(e)
if found_exceptions and not testdef.expect_test_failure:
raise JobOutputsError(found_exceptions, job_stdio)
elif not found_exceptions and testdef.expect_test_failure:
register_exception(AssertionError("Expected job to miss at least one test assumption but all were met."))
raise JobOutputsError(found_exceptions, job_stdio)
else:
return job_stdio
def _format_stream(output, stream, format):
output = output or ""
if format:
msg = f"---------------------- >> begin tool {stream} << -----------------------\n"
msg += f"{output}\n"
msg += f"----------------------- >> end tool {stream} << ------------------------\n"
else:
msg = output
return msg
[docs]class JobOutputsError(AssertionError):
[docs] def __init__(self, output_exceptions, job_stdio):
big_message = "\n".join(map(util.unicodify, output_exceptions))
super().__init__(big_message)
self.job_stdio = job_stdio
self.output_exceptions = output_exceptions
[docs]def test_data_iter(required_files):
for fname, extra in required_files:
data_dict = dict(
fname=fname,
metadata=extra.get("metadata", {}),
composite_data=extra.get("composite_data", []),
ftype=extra.get("ftype", DEFAULT_FTYPE),
dbkey=extra.get("dbkey", DEFAULT_DBKEY),
location=extra.get("location", None),
)
edit_attributes = extra.get("edit_attributes", [])
# currently only renaming is supported
for edit_att in edit_attributes:
if edit_att.get("type", None) == "name":
new_name = edit_att.get("value", None)
assert new_name, "You must supply the new dataset name as the value tag of the edit_attributes tag"
data_dict["name"] = new_name
else:
raise Exception(f"edit_attributes type ({edit_att.get('type', None)}) is unimplemented")
yield data_dict