Warning

This document is for an old release of Galaxy. You can alternatively view this page in the latest release if it exists or view the top of the latest release's documentation.

Source code for galaxy.job_execution.output_collect

""" Code allowing tools to define extra files associated with an output datset.
"""
import logging
import operator
import os
import re
from tempfile import NamedTemporaryFile
from typing import (
    Callable,
    Dict,
    List,
    Optional,
    Union,
)

from sqlalchemy.orm.scoping import ScopedSession

from galaxy.model import (
    DatasetInstance,
    HistoryDatasetAssociation,
    HistoryDatasetCollectionAssociation,
    Job,
    JobToOutputDatasetAssociation,
    LibraryDatasetDatasetAssociation,
)
from galaxy.model.base import transaction
from galaxy.model.dataset_collections import builder
from galaxy.model.dataset_collections.structure import UninitializedTree
from galaxy.model.dataset_collections.type_description import COLLECTION_TYPE_DESCRIPTION_FACTORY
from galaxy.model.store.discover import (
    discover_target_directory,
    DiscoveredFile,
    JsonCollectedDatasetMatch,
    MetadataSourceProvider as AbstractMetadataSourceProvider,
    ModelPersistenceContext,
    PermissionProvider as AbstractPermissionProvider,
    persist_elements_to_folder,
    persist_elements_to_hdca,
    persist_hdas,
    RegexCollectedDatasetMatch,
    SessionlessModelPersistenceContext,
    UNSET,
)
from galaxy.objectstore import (
    ObjectStore,
    persist_extra_files,
)
from galaxy.tool_util.parser.output_collection_def import (
    DEFAULT_DATASET_COLLECTOR_DESCRIPTION,
    INPUT_DBKEY_TOKEN,
    ToolProvidedMetadataDatasetCollection,
)
from galaxy.tool_util.parser.output_objects import (
    ToolOutput,
    ToolOutputCollection,
)
from galaxy.tool_util.provided_metadata import BaseToolProvidedMetadata
from galaxy.util import (
    shrink_and_unicodify,
    unicodify,
)

DATASET_ID_TOKEN = "DATASET_ID"

log = logging.getLogger(__name__)


# PermissionProvider and MetadataSourceProvider are abstractions over input data used to
# collect and produce dynamic outputs.
[docs]class PermissionProvider(AbstractPermissionProvider):
[docs] def __init__(self, inp_data, security_agent, job): self._job = job self._security_agent = security_agent self._inp_data = inp_data self._user = job.user self._permissions = None
@property def permissions(self): if self._permissions is None: inp_data = self._inp_data existing_datasets = [inp for inp in inp_data.values() if inp] if existing_datasets: permissions = self._security_agent.guess_derived_permissions_for_datasets(existing_datasets) else: # No valid inputs, we will use history defaults permissions = self._security_agent.history_get_default_permissions(self._job.history) self._permissions = permissions return self._permissions
[docs] def set_default_hda_permissions(self, primary_data): permissions = self.permissions if permissions is not UNSET: self._security_agent.set_all_dataset_permissions(primary_data.dataset, permissions, new=True, flush=False)
[docs] def copy_dataset_permissions(self, init_from, primary_data): self._security_agent.copy_dataset_permissions(init_from.dataset, primary_data.dataset, flush=False)
[docs]class MetadataSourceProvider(AbstractMetadataSourceProvider):
[docs] def __init__(self, inp_data): self._inp_data = inp_data
[docs] def get_metadata_source(self, input_name): return self._inp_data[input_name]
[docs]def collect_dynamic_outputs( job_context, output_collections, ): # unmapped outputs do not correspond to explicit outputs of the tool, they were inferred entirely # from the tool provided metadata (e.g. galaxy.json). for unnamed_output_dict in job_context.tool_provided_metadata.get_unnamed_outputs(): assert "destination" in unnamed_output_dict assert "elements" in unnamed_output_dict destination = unnamed_output_dict["destination"] elements = unnamed_output_dict["elements"] assert "type" in destination destination_type = destination["type"] assert destination_type in ["library_folder", "hdca", "hdas"] # three destination types we need to handle here - "library_folder" (place discovered files in a library folder), # "hdca" (place discovered files in a history dataset collection), and "hdas" (place discovered files in a history # as stand-alone datasets). if destination_type == "library_folder": # populate a library folder (needs to have already been created) library_folder = job_context.get_library_folder(destination) persist_elements_to_folder(job_context, elements, library_folder) job_context.persist_library_folder(library_folder) elif destination_type == "hdca": # create or populate a dataset collection in the history assert "collection_type" in unnamed_output_dict object_id = destination.get("object_id") if object_id: hdca = job_context.get_hdca(object_id) else: name = unnamed_output_dict.get("name", "unnamed collection") collection_type = unnamed_output_dict["collection_type"] collection_type_description = COLLECTION_TYPE_DESCRIPTION_FACTORY.for_collection_type(collection_type) structure = UninitializedTree(collection_type_description) hdca = job_context.create_hdca(name, structure) output_collections[name] = hdca job_context.add_dataset_collection(hdca) error_message = unnamed_output_dict.get("error_message") if error_message: hdca.collection.handle_population_failed(error_message) else: persist_elements_to_hdca(job_context, elements, hdca, collector=DEFAULT_DATASET_COLLECTOR) elif destination_type == "hdas": persist_hdas(elements, job_context, final_job_state=job_context.final_job_state) for name, has_collection in output_collections.items(): output_collection_def = job_context.output_collection_def(name) if not output_collection_def: continue if not output_collection_def.dynamic_structure: continue # Could be HDCA for normal jobs or a DC for mapping # jobs. if hasattr(has_collection, "collection"): collection = has_collection.collection else: collection = has_collection # We are adding dynamic collections, which may be precreated, but their actually state is still new! collection.populated_state = collection.populated_states.NEW try: collection_builder = builder.BoundCollectionBuilder(collection) dataset_collectors = [ dataset_collector(description) for description in output_collection_def.dataset_collector_descriptions ] output_name = output_collection_def.name filenames = job_context.find_files(output_name, collection, dataset_collectors) job_context.populate_collection_elements( collection, collection_builder, filenames, name=output_collection_def.name, metadata_source_name=output_collection_def.metadata_source, final_job_state=job_context.final_job_state, ) collection_builder.populate() except Exception: log.exception("Problem gathering output collection.") collection.handle_population_failed("Problem building datasets for collection.") job_context.add_dataset_collection(has_collection)
[docs]class BaseJobContext(ModelPersistenceContext): max_discovered_files: Union[int, float] tool_provided_metadata: BaseToolProvidedMetadata job_working_directory: str
[docs] def add_dataset_collection(self, collection): pass
[docs] def find_files(self, output_name, collection, dataset_collectors) -> list: discovered_files = [] for discovered_file in discover_files( output_name, self.tool_provided_metadata, dataset_collectors, self.job_working_directory, collection ): self.increment_discovered_file_count() discovered_files.append(discovered_file) return discovered_files
[docs] def get_job_id(self): return None # overwritten in subclasses
[docs]class JobContext(BaseJobContext):
[docs] def __init__( self, tool, tool_provided_metadata: BaseToolProvidedMetadata, job, job_working_directory, permission_provider, metadata_source_provider, input_dbkey, object_store, final_job_state, max_discovered_files: Optional[int], flush_per_n_datasets=None, ): self.tool = tool self._metadata_source_provider = metadata_source_provider self._permission_provider = permission_provider self._input_dbkey = input_dbkey self.app = tool.app self._sa_session = tool.sa_session self._job = job self.job_working_directory = job_working_directory self.tool_provided_metadata = tool_provided_metadata self._object_store = object_store self.final_job_state = final_job_state self._flush_per_n_datasets = flush_per_n_datasets self.max_discovered_files = float("inf") if max_discovered_files is None else max_discovered_files self.discovered_file_count = 0 self._tag_handler = None
@property def tag_handler(self): if self._tag_handler is None: self._tag_handler = self.app.tag_handler.create_tag_handler_session(self.job.galaxy_session) return self._tag_handler @property def work_context(self): from galaxy.work.context import WorkRequestContext return WorkRequestContext(self.app, user=self.user, galaxy_session=self.job.galaxy_session) @property def sa_session(self) -> ScopedSession: return self._sa_session @property def permission_provider(self) -> PermissionProvider: return self._permission_provider @property def metadata_source_provider(self) -> MetadataSourceProvider: return self._metadata_source_provider @property def job(self) -> Job: return self._job @property def flush_per_n_datasets(self) -> Optional[int]: return self._flush_per_n_datasets @property def input_dbkey(self) -> str: return self._input_dbkey @property def object_store(self) -> ObjectStore: return self._object_store @property def user(self): if self.job: user = self.job.user else: user = None return user
[docs] def persist_object(self, obj): self.sa_session.add(obj)
[docs] def flush(self): with transaction(self.sa_session): self.sa_session.commit()
[docs] def get_library_folder(self, destination): app = self.app library_folder_manager = app.library_folder_manager folder_id = destination.get("library_folder_id") decoded_folder_id = app.security.decode_id(folder_id) if isinstance(folder_id, str) else folder_id library_folder = library_folder_manager.get(self.work_context, decoded_folder_id) return library_folder
[docs] def get_hdca(self, object_id): hdca = self.sa_session.query(HistoryDatasetCollectionAssociation).get(int(object_id)) return hdca
[docs] def create_library_folder(self, parent_folder, name, description): assert parent_folder.id library_folder_manager = self.app.library_folder_manager nested_folder = library_folder_manager.create(self.work_context, parent_folder.id, name, description) return nested_folder
[docs] def create_hdca(self, name, structure): history = self.job.history trans = self.work_context collection_manager = self.app.dataset_collection_manager hdca = collection_manager.precreate_dataset_collection_instance(trans, history, name, structure=structure) return hdca
[docs] def add_output_dataset_association(self, name, dataset): assoc = JobToOutputDatasetAssociation(name, dataset) assoc.job = self.job self.sa_session.add(assoc)
[docs] def add_library_dataset_to_folder(self, library_folder, ld): trans = self.work_context ldda = ld.library_dataset_dataset_association trans.sa_session.add(ldda) trans = self.work_context trans.app.security_agent.copy_library_permissions(trans, library_folder, ld) trans.sa_session.add(ld) with transaction(trans.sa_session): trans.sa_session.commit() # Permissions must be the same on the LibraryDatasetDatasetAssociation and the associated LibraryDataset trans.app.security_agent.copy_library_permissions(trans, ld, ldda) # Copy the current user's DefaultUserPermissions to the new LibraryDatasetDatasetAssociation.dataset trans.app.security_agent.set_all_dataset_permissions( ldda.dataset, trans.app.security_agent.user_get_default_permissions(trans.user), flush=False, new=True ) library_folder.add_library_dataset(ld, genome_build=ldda.dbkey) trans.sa_session.add(library_folder) with transaction(trans.sa_session): trans.sa_session.commit() trans.sa_session.add(ld) with transaction(trans.sa_session): trans.sa_session.commit()
[docs] def add_datasets_to_history(self, datasets, for_output_dataset=None): sa_session = self.sa_session self.job.history.stage_addition(datasets) pending_histories = {self.job.history} if for_output_dataset is not None: # Need to update all associated output hdas, i.e. history was # shared with job running for copied_dataset in for_output_dataset.dataset.history_associations: if copied_dataset == for_output_dataset: continue for dataset in datasets: new_data = dataset.copy() copied_dataset.history.stage_addition(new_data) pending_histories.add(copied_dataset.history) sa_session.add(new_data) for history in pending_histories: history.add_pending_items()
[docs] def output_collection_def(self, name): tool = self.tool if name not in tool.output_collections: return None output_collection_def = tool.output_collections[name] return output_collection_def
[docs] def output_def(self, name): tool = self.tool if name not in tool.outputs: return None output_collection_def = tool.outputs[name] return output_collection_def
[docs] def job_id(self): return self.job.id
[docs] def get_job_id(self): return self.job.id
[docs] def get_implicit_collection_jobs_association_id(self): return self.job.implicit_collection_jobs_association and self.job.implicit_collection_jobs_association.id
[docs]class SessionlessJobContext(SessionlessModelPersistenceContext, BaseJobContext):
[docs] def __init__( self, metadata_params, tool_provided_metadata: BaseToolProvidedMetadata, object_store, export_store, import_store, working_directory, final_job_state, max_discovered_files: Optional[int], ): # TODO: use a metadata source provider... (pop from inputs and add parameter) super().__init__(object_store, export_store, working_directory) self.metadata_params = metadata_params self.tool_provided_metadata = tool_provided_metadata self.import_store = import_store self.final_job_state = final_job_state self.max_discovered_files = float("inf") if max_discovered_files is None else max_discovered_files self.discovered_file_count = 0
[docs] def output_collection_def(self, name): tool_as_dict = self.metadata_params["tool"] output_collection_defs = tool_as_dict["output_collections"] if name not in output_collection_defs: return False output_collection_def_dict = output_collection_defs[name] output_collection_def = ToolOutputCollection.from_dict(name, output_collection_def_dict) return output_collection_def
[docs] def output_def(self, name): tool_as_dict = self.metadata_params["tool"] output_defs = tool_as_dict["outputs"] if name not in output_defs: return None output_def_dict = output_defs[name] output_def = ToolOutput.from_dict(name, output_def_dict) return output_def
[docs] def job_id(self): return "non-session bound job"
[docs] def get_hdca(self, object_id): hdca = self.import_store.sa_session.query(HistoryDatasetCollectionAssociation).find(int(object_id)) if hdca: self.export_store.add_dataset_collection(hdca) for collection_dataset in hdca.dataset_instances: include_files = True self.export_store.add_dataset(collection_dataset, include_files=include_files) self.export_store.collection_datasets.add(collection_dataset.id) return hdca
[docs] def add_dataset_collection(self, collection): self.export_store.add_dataset_collection(collection) for collection_dataset in collection.dataset_instances: include_files = True self.export_store.add_dataset(collection_dataset, include_files=include_files) self.export_store.collection_datasets.add(collection_dataset.id)
[docs] def add_output_dataset_association(self, name, dataset_instance): self.export_store.add_job_output_dataset_associations(self.get_job_id(), name, dataset_instance)
[docs] def get_job_id(self): return self.metadata_params["job_id_tag"]
[docs] def get_implicit_collection_jobs_association_id(self): return self.metadata_params.get("implicit_collection_jobs_association_id")
[docs]def collect_primary_datasets(job_context: Union[JobContext, SessionlessJobContext], output, input_ext): job_working_directory = job_context.job_working_directory # Loop through output file names, looking for generated primary # datasets in form specified by discover dataset patterns or in tool provided metadata. primary_output_assigned = False new_outdata_name = None primary_datasets: Dict[str, Dict[str, Union[HistoryDatasetAssociation, LibraryDatasetDatasetAssociation]]] = {} storage_callbacks: List[Callable] = [] for output_index, (name, outdata) in enumerate(output.items()): dataset_collectors = [DEFAULT_DATASET_COLLECTOR] output_def = job_context.output_def(name) if output_def is not None: dataset_collectors = [ dataset_collector(description) for description in output_def.dataset_collector_descriptions ] filenames = {} for discovered_file in discover_files( name, job_context.tool_provided_metadata, dataset_collectors, job_working_directory, outdata ): job_context.increment_discovered_file_count() filenames[discovered_file.path] = discovered_file for filename_index, (filename, discovered_file) in enumerate(filenames.items()): extra_file_collector = discovered_file.collector fields_match = discovered_file.match if not fields_match: # Before I guess pop() would just have thrown an IndexError raise Exception(f"Problem parsing metadata fields for file {filename}") designation = fields_match.designation ext = fields_match.ext if ext == "input": ext = input_ext dbkey = fields_match.dbkey if dbkey == INPUT_DBKEY_TOKEN: dbkey = job_context.input_dbkey if filename_index == 0 and extra_file_collector.assign_primary_output and output_index == 0: new_outdata_name = fields_match.name or f"{outdata.name} ({designation})" outdata.change_datatype(ext) outdata.dbkey = dbkey outdata.designation = designation outdata.dataset.external_filename = None # resets filename_override # Move data from temp location to dataset location job_context.object_store.update_from_file(outdata.dataset, file_name=filename, create=True) primary_output_assigned = True continue if name not in primary_datasets: primary_datasets[name] = {} visible = fields_match.visible # Create new primary dataset new_primary_name = fields_match.name or f"{outdata.name} ({designation})" info = outdata.info # TODO: should be able to disambiguate files in different directories... new_primary_filename = os.path.split(filename)[-1] new_primary_datasets_attributes = job_context.tool_provided_metadata.get_new_dataset_meta_by_basename( name, new_primary_filename ) extra_files = None if new_primary_datasets_attributes: extra_files_path = new_primary_datasets_attributes.get("extra_files", None) if extra_files_path: extra_files = os.path.join(job_working_directory, extra_files_path) primary_data = job_context.create_dataset( ext, designation, visible, dbkey, new_primary_name, filename, extra_files=extra_files, info=info, init_from=outdata, dataset_attributes=new_primary_datasets_attributes, creating_job_id=job_context.get_job_id() if job_context else None, storage_callbacks=storage_callbacks, ) # Associate new dataset with job job_context.add_output_dataset_association(f"__new_primary_file_{name}|{designation}__", primary_data) job_context.add_datasets_to_history([primary_data], for_output_dataset=outdata) # Add dataset to return dict primary_datasets[name][designation] = primary_data if primary_output_assigned: outdata.name = new_outdata_name outdata.init_meta() outdata.set_meta() outdata.set_peek() outdata.discovered = True sa_session = job_context.sa_session if sa_session: sa_session.add(outdata) # Move discovered outputs to storage and set metdata / peeks for callback in storage_callbacks: callback() return primary_datasets
[docs]def discover_files(output_name, tool_provided_metadata, extra_file_collectors, job_working_directory, matchable): extra_file_collectors = extra_file_collectors if extra_file_collectors and extra_file_collectors[0].discover_via == "tool_provided_metadata": # just load entries from tool provided metadata... assert len(extra_file_collectors) == 1 extra_file_collector = extra_file_collectors[0] target_directory = discover_target_directory(extra_file_collector.directory, job_working_directory) for dataset in tool_provided_metadata.get_new_datasets(output_name): filename = dataset["filename"] path = os.path.join(target_directory, filename) yield DiscoveredFile( path, extra_file_collector, JsonCollectedDatasetMatch(dataset, extra_file_collector, filename, path=path), ) else: for match, collector in walk_over_file_collectors(extra_file_collectors, job_working_directory, matchable): yield DiscoveredFile(match.path, collector, match)
[docs]def walk_over_file_collectors(extra_file_collectors, job_working_directory, matchable): for extra_file_collector in extra_file_collectors: assert extra_file_collector.discover_via == "pattern" for match in walk_over_extra_files( extra_file_collector.directory, extra_file_collector, job_working_directory, matchable ): yield match, extra_file_collector
[docs]def walk_over_extra_files(target_dir, extra_file_collector, job_working_directory, matchable, parent_paths=None): """ Walks through all files in a given directory, and returns all files that match the given collector's match criteria. If the collector has the recurse flag enabled, will also recursively descend into child folders. """ parent_paths = parent_paths or [] def _walk(target_dir, extra_file_collector, job_working_directory, matchable, parent_paths): directory = discover_target_directory(target_dir, job_working_directory) if os.path.isdir(directory): for filename in os.listdir(directory): path = os.path.join(directory, filename) if os.path.isdir(path): if extra_file_collector.recurse: new_parent_paths = parent_paths[:] new_parent_paths.append(filename) # The current directory is already validated, so use that as the next job_working_directory when recursing yield from _walk( filename, extra_file_collector, directory, matchable, parent_paths=new_parent_paths ) else: match = extra_file_collector.match(matchable, filename, path=path, parent_paths=parent_paths) if match: yield match yield from extra_file_collector.sort( _walk(target_dir, extra_file_collector, job_working_directory, matchable, parent_paths) )
[docs]def dataset_collector(dataset_collection_description): if dataset_collection_description is DEFAULT_DATASET_COLLECTOR_DESCRIPTION: # Use 'is' and 'in' operators, so lets ensure this is # treated like a singleton. return DEFAULT_DATASET_COLLECTOR else: if dataset_collection_description.discover_via == "pattern": return DatasetCollector(dataset_collection_description) else: return ToolMetadataDatasetCollector(dataset_collection_description)
[docs]class ToolMetadataDatasetCollector:
[docs] def __init__(self, dataset_collection_description): self.discover_via = dataset_collection_description.discover_via self.default_dbkey = dataset_collection_description.default_dbkey self.default_ext = dataset_collection_description.default_ext self.default_visible = dataset_collection_description.default_visible self.directory = dataset_collection_description.directory self.assign_primary_output = dataset_collection_description.assign_primary_output
[docs]class DatasetCollector:
[docs] def __init__(self, dataset_collection_description): self.discover_via = dataset_collection_description.discover_via # dataset_collection_description is an abstract description # built from the tool parsing module - see galaxy.tool_util.parser.output_collection_def self.sort_key = dataset_collection_description.sort_key self.sort_reverse = dataset_collection_description.sort_reverse self.sort_comp = dataset_collection_description.sort_comp self.pattern = dataset_collection_description.pattern self.default_dbkey = dataset_collection_description.default_dbkey self.default_ext = dataset_collection_description.default_ext self.default_visible = dataset_collection_description.default_visible self.directory = dataset_collection_description.directory self.assign_primary_output = dataset_collection_description.assign_primary_output self.recurse = dataset_collection_description.recurse self.match_relative_path = dataset_collection_description.match_relative_path
def _pattern_for_dataset(self, dataset_instance=None): token_replacement = r"\d+" if dataset_instance: token_replacement = str(dataset_instance.id) return self.pattern.replace(DATASET_ID_TOKEN, token_replacement)
[docs] def match(self, dataset_instance, filename, path=None, parent_paths=None): pattern = self._pattern_for_dataset(dataset_instance) if self.match_relative_path and parent_paths: filename = os.path.join(*parent_paths, filename) re_match = re.match(pattern, filename) match_object = None if re_match: match_object = RegexCollectedDatasetMatch(re_match, self, filename, path=path) return match_object
[docs] def sort(self, matches): reverse = self.sort_reverse sort_key = self.sort_key sort_comp = self.sort_comp assert sort_key in ["filename", "dbkey", "name", "designation"] assert sort_comp in ["lexical", "numeric"] key = operator.attrgetter(sort_key) if sort_comp == "numeric": key = _compose(int, key) return sorted(matches, key=key, reverse=reverse)
def _compose(f, g): return lambda x: f(g(x)) DEFAULT_DATASET_COLLECTOR = DatasetCollector(DEFAULT_DATASET_COLLECTOR_DESCRIPTION) DEFAULT_TOOL_PROVIDED_DATASET_COLLECTOR = ToolMetadataDatasetCollector(ToolProvidedMetadataDatasetCollection())
[docs]def read_exit_code_from(exit_code_file, id_tag): """Read exit code reported for a Galaxy job.""" try: # This should be an 8-bit exit code, but read ahead anyway: exit_code_str = open(exit_code_file).read(32) except Exception: # By default, the exit code is 0, which typically indicates success. exit_code_str = "0" try: # Decode the exit code. If it's bogus, then just use 0. exit_code = int(exit_code_str) except ValueError: galaxy_id_tag = id_tag log.warning(f"({galaxy_id_tag}) Exit code '{exit_code_str}' invalid. Using 0.") exit_code = 0 return exit_code
[docs]def default_exit_code_file(files_dir, id_tag): return os.path.join(files_dir, f"galaxy_{id_tag}.ec")
[docs]def collect_extra_files( object_store: ObjectStore, dataset: "DatasetInstance", job_working_directory: str, outputs_to_working_directory: bool = False, ): # TODO: should this use compute_environment to determine the extra files path ? assert dataset.dataset real_file_name = file_name = dataset.dataset.extra_files_path_name_from(object_store) if outputs_to_working_directory: # OutputsToWorkingDirectoryPathRewriter always rewrites extra files to uuid path, # so we have to collect from that path even if the real extra files path is dataset_N_files file_name = f"dataset_{dataset.dataset.uuid}_files" output_location = "outputs" temp_file_path = os.path.join(job_working_directory, output_location, file_name) if not os.path.exists(temp_file_path): # Fall back to working dir, remove in 23.2 output_location = "working" temp_file_path = os.path.join(job_working_directory, output_location, file_name) if not os.path.exists(temp_file_path): # no outputs to working directory, but may still need to push form cache to backend temp_file_path = dataset.extra_files_path try: # This skips creation of directories - object store # automatically creates them. However, empty directories will # not be created in the object store at all, which might be a # problem. persist_extra_files( object_store=object_store, src_extra_files_path=temp_file_path, primary_data=dataset, extra_files_path_name=real_file_name, ) except Exception as e: log.debug("Error in collect_associated_files: %s", unicodify(e)) # Handle composite datatypes of auto_primary_file type if dataset.datatype.composite_type == "auto_primary_file" and not dataset.has_data(): try: with NamedTemporaryFile(mode="w") as temp_fh: temp_fh.write(dataset.datatype.generate_primary_file(dataset)) temp_fh.flush() object_store.update_from_file(dataset.dataset, file_name=temp_fh.name, create=True) dataset.set_size() except Exception as e: log.warning( "Unable to generate primary composite file automatically for %s: %s", dataset.dataset.id, unicodify(e) )
[docs]def collect_shrinked_content_from_path(path): try: with open(path, "rb") as fh: return shrink_and_unicodify(fh.read().strip()) except FileNotFoundError: return None