Warning

This document is for an in-development version of Galaxy. You can alternatively view this page in the latest release if it exists or view the top of the latest release's documentation.

Source code for galaxy.job_execution.output_collect

""" Code allowing tools to define extra files associated with an output datset.
"""

import logging
import operator
import os
import re
from tempfile import NamedTemporaryFile
from typing import (
    Callable,
    Dict,
    List,
    Optional,
    Union,
)

from sqlalchemy.orm.scoping import ScopedSession

from galaxy.model import (
    DatasetInstance,
    HistoryDatasetAssociation,
    HistoryDatasetCollectionAssociation,
    Job,
    JobToOutputDatasetAssociation,
    LibraryDatasetDatasetAssociation,
)
from galaxy.model.base import transaction
from galaxy.model.dataset_collections import builder
from galaxy.model.dataset_collections.structure import UninitializedTree
from galaxy.model.dataset_collections.type_description import COLLECTION_TYPE_DESCRIPTION_FACTORY
from galaxy.model.store.discover import (
    discover_target_directory,
    DiscoveredFile,
    JsonCollectedDatasetMatch,
    MetadataSourceProvider as AbstractMetadataSourceProvider,
    ModelPersistenceContext,
    PermissionProvider as AbstractPermissionProvider,
    persist_elements_to_folder,
    persist_elements_to_hdca,
    persist_hdas,
    RegexCollectedDatasetMatch,
    SessionlessModelPersistenceContext,
    UNSET,
)
from galaxy.objectstore import (
    ObjectStore,
    persist_extra_files,
)
from galaxy.tool_util.parser.output_collection_def import (
    DEFAULT_DATASET_COLLECTOR_DESCRIPTION,
    INPUT_DBKEY_TOKEN,
    ToolProvidedMetadataDatasetCollection,
)
from galaxy.tool_util.parser.output_objects import (
    ToolOutput,
    ToolOutputCollection,
)
from galaxy.tool_util.provided_metadata import BaseToolProvidedMetadata
from galaxy.util import (
    shrink_and_unicodify,
    unicodify,
)

DATASET_ID_TOKEN = "DATASET_ID"

log = logging.getLogger(__name__)


# PermissionProvider and MetadataSourceProvider are abstractions over input data used to
# collect and produce dynamic outputs.
[docs]class PermissionProvider(AbstractPermissionProvider):
[docs] def __init__(self, inp_data, security_agent, job): self._job = job self._security_agent = security_agent self._inp_data = inp_data self._user = job.user self._permissions = None
@property def permissions(self): if self._permissions is None: inp_data = self._inp_data existing_datasets = [inp for inp in inp_data.values() if inp] if existing_datasets: permissions = self._security_agent.guess_derived_permissions_for_datasets(existing_datasets) else: # No valid inputs, we will use history defaults permissions = self._security_agent.history_get_default_permissions(self._job.history) self._permissions = permissions return self._permissions
[docs] def set_default_hda_permissions(self, primary_data): if (permissions := self.permissions) is not UNSET: self._security_agent.set_all_dataset_permissions(primary_data.dataset, permissions, new=True, flush=False)
[docs] def copy_dataset_permissions(self, init_from, primary_data): self._security_agent.copy_dataset_permissions(init_from.dataset, primary_data.dataset, flush=False)
[docs]class MetadataSourceProvider(AbstractMetadataSourceProvider):
[docs] def __init__(self, inp_data): self._inp_data = inp_data
[docs] def get_metadata_source(self, input_name): return self._inp_data[input_name]
[docs]def collect_dynamic_outputs( job_context, output_collections, ): # unmapped outputs do not correspond to explicit outputs of the tool, they were inferred entirely # from the tool provided metadata (e.g. galaxy.json). for unnamed_output_dict in job_context.tool_provided_metadata.get_unnamed_outputs(): assert "destination" in unnamed_output_dict assert "elements" in unnamed_output_dict destination = unnamed_output_dict["destination"] elements = unnamed_output_dict["elements"] assert "type" in destination destination_type = destination["type"] assert destination_type in ["library_folder", "hdca", "hdas"] # three destination types we need to handle here - "library_folder" (place discovered files in a library folder), # "hdca" (place discovered files in a history dataset collection), and "hdas" (place discovered files in a history # as stand-alone datasets). if destination_type == "library_folder": # populate a library folder (needs to have already been created) library_folder = job_context.get_library_folder(destination) persist_elements_to_folder(job_context, elements, library_folder) job_context.persist_library_folder(library_folder) elif destination_type == "hdca": # create or populate a dataset collection in the history assert "collection_type" in unnamed_output_dict object_id = destination.get("object_id") if object_id: hdca = job_context.get_hdca(object_id) else: name = unnamed_output_dict.get("name", "unnamed collection") collection_type = unnamed_output_dict["collection_type"] collection_type_description = COLLECTION_TYPE_DESCRIPTION_FACTORY.for_collection_type(collection_type) structure = UninitializedTree(collection_type_description) hdca = job_context.create_hdca(name, structure) output_collections[name] = hdca job_context.add_dataset_collection(hdca) error_message = unnamed_output_dict.get("error_message") if error_message: hdca.collection.handle_population_failed(error_message) else: persist_elements_to_hdca(job_context, elements, hdca, collector=DEFAULT_DATASET_COLLECTOR) elif destination_type == "hdas": persist_hdas(elements, job_context, final_job_state=job_context.final_job_state) for name, has_collection in output_collections.items(): output_collection_def = job_context.output_collection_def(name) if not output_collection_def: continue if not output_collection_def.dynamic_structure: continue # Could be HDCA for normal jobs or a DC for mapping # jobs. if hasattr(has_collection, "collection"): collection = has_collection.collection else: collection = has_collection # We are adding dynamic collections, which may be precreated, but their actually state is still new! collection.populated_state = collection.populated_states.NEW try: collection_builder = builder.BoundCollectionBuilder(collection) dataset_collectors = [ dataset_collector(description) for description in output_collection_def.dataset_collector_descriptions ] output_name = output_collection_def.name filenames = job_context.find_files(output_name, collection, dataset_collectors) job_context.populate_collection_elements( collection, collection_builder, filenames, name=output_collection_def.name, metadata_source_name=output_collection_def.metadata_source, final_job_state=job_context.final_job_state, change_datatype_actions=job_context.change_datatype_actions, ) collection_builder.populate() except Exception: log.exception("Problem gathering output collection.") collection.handle_population_failed("Problem building datasets for collection.") job_context.add_dataset_collection(has_collection)
[docs]class BaseJobContext(ModelPersistenceContext): max_discovered_files: Union[int, float] tool_provided_metadata: BaseToolProvidedMetadata job_working_directory: str
[docs] def add_dataset_collection(self, collection): pass
[docs] def find_files(self, output_name, collection, dataset_collectors) -> list: discovered_files = [] for discovered_file in discover_files( output_name, self.tool_provided_metadata, dataset_collectors, self.job_working_directory, collection ): self.increment_discovered_file_count() discovered_files.append(discovered_file) return discovered_files
[docs] def get_job_id(self): return None # overwritten in subclasses
[docs]class JobContext(BaseJobContext):
[docs] def __init__( self, tool, tool_provided_metadata: BaseToolProvidedMetadata, job, job_working_directory, permission_provider, metadata_source_provider, input_dbkey, object_store, final_job_state, max_discovered_files: Optional[int], flush_per_n_datasets=None, ): self.tool = tool self._metadata_source_provider = metadata_source_provider self._permission_provider = permission_provider self._input_dbkey = input_dbkey self.app = tool.app self._sa_session = tool.sa_session self._job = job self.job_working_directory = job_working_directory self.tool_provided_metadata = tool_provided_metadata self._object_store = object_store self.final_job_state = final_job_state self._flush_per_n_datasets = flush_per_n_datasets self.max_discovered_files = float("inf") if max_discovered_files is None else max_discovered_files self.discovered_file_count = 0 self._tag_handler = None
@property def change_datatype_actions(self): return self.job.get_change_datatype_actions() @property def tag_handler(self): if self._tag_handler is None: self._tag_handler = self.app.tag_handler.create_tag_handler_session(self.job.galaxy_session) return self._tag_handler @property def work_context(self): from galaxy.work.context import WorkRequestContext return WorkRequestContext(self.app, user=self.user, galaxy_session=self.job.galaxy_session) @property def sa_session(self) -> ScopedSession: return self._sa_session @property def permission_provider(self) -> PermissionProvider: return self._permission_provider @property def metadata_source_provider(self) -> MetadataSourceProvider: return self._metadata_source_provider @property def job(self) -> Job: return self._job @property def flush_per_n_datasets(self) -> Optional[int]: return self._flush_per_n_datasets @property def input_dbkey(self) -> str: return self._input_dbkey @property def object_store(self) -> ObjectStore: return self._object_store @property def user(self): if self.job: user = self.job.user else: user = None return user
[docs] def persist_object(self, obj): self.sa_session.add(obj)
[docs] def flush(self): with transaction(self.sa_session): self.sa_session.commit()
[docs] def get_library_folder(self, destination): app = self.app library_folder_manager = app.library_folder_manager folder_id = destination.get("library_folder_id") decoded_folder_id = app.security.decode_id(folder_id) if isinstance(folder_id, str) else folder_id library_folder = library_folder_manager.get(self.work_context, decoded_folder_id) return library_folder
[docs] def get_hdca(self, object_id): hdca = self.sa_session.query(HistoryDatasetCollectionAssociation).get(int(object_id)) return hdca
[docs] def create_library_folder(self, parent_folder, name, description): assert parent_folder.id library_folder_manager = self.app.library_folder_manager nested_folder = library_folder_manager.create(self.work_context, parent_folder.id, name, description) return nested_folder
[docs] def create_hdca(self, name, structure): history = self.job.history trans = self.work_context collection_manager = self.app.dataset_collection_manager hdca = collection_manager.precreate_dataset_collection_instance(trans, history, name, structure=structure) return hdca
[docs] def add_output_dataset_association(self, name, dataset): assoc = JobToOutputDatasetAssociation(name, dataset) assoc.job = self.job self.sa_session.add(assoc)
[docs] def add_library_dataset_to_folder(self, library_folder, ld): trans = self.work_context ldda = ld.library_dataset_dataset_association trans.sa_session.add(ldda) trans = self.work_context trans.app.security_agent.copy_library_permissions(trans, library_folder, ld) trans.sa_session.add(ld) with transaction(trans.sa_session): trans.sa_session.commit() # Permissions must be the same on the LibraryDatasetDatasetAssociation and the associated LibraryDataset trans.app.security_agent.copy_library_permissions(trans, ld, ldda) # Copy the current user's DefaultUserPermissions to the new LibraryDatasetDatasetAssociation.dataset trans.app.security_agent.set_all_dataset_permissions( ldda.dataset, trans.app.security_agent.user_get_default_permissions(trans.user), flush=False, new=True ) library_folder.add_library_dataset(ld, genome_build=ldda.dbkey) trans.sa_session.add(library_folder) with transaction(trans.sa_session): trans.sa_session.commit() trans.sa_session.add(ld) with transaction(trans.sa_session): trans.sa_session.commit()
[docs] def add_datasets_to_history(self, datasets, for_output_dataset=None): sa_session = self.sa_session self.job.history.stage_addition(datasets) pending_histories = {self.job.history} if for_output_dataset is not None: # Need to update all associated output hdas, i.e. history was # shared with job running for copied_dataset in for_output_dataset.dataset.history_associations: if copied_dataset == for_output_dataset: continue for dataset in datasets: new_data = dataset.copy() copied_dataset.history.stage_addition(new_data) pending_histories.add(copied_dataset.history) sa_session.add(new_data) for history in pending_histories: history.add_pending_items()
[docs] def output_collection_def(self, name): tool = self.tool if name not in tool.output_collections: return None output_collection_def = tool.output_collections[name] return output_collection_def
[docs] def output_def(self, name): tool = self.tool if name not in tool.outputs: return None output_collection_def = tool.outputs[name] return output_collection_def
[docs] def job_id(self): return self.job.id
[docs] def get_job_id(self): return self.job.id
[docs] def get_implicit_collection_jobs_association_id(self): return self.job.implicit_collection_jobs_association and self.job.implicit_collection_jobs_association.id
[docs]class SessionlessJobContext(SessionlessModelPersistenceContext, BaseJobContext):
[docs] def __init__( self, metadata_params, tool_provided_metadata: BaseToolProvidedMetadata, object_store, export_store, import_store, working_directory, final_job_state, max_discovered_files: Optional[int], ): # TODO: use a metadata source provider... (pop from inputs and add parameter) super().__init__(object_store, export_store, working_directory) self.metadata_params = metadata_params self.tool_provided_metadata = tool_provided_metadata self.import_store = import_store self.final_job_state = final_job_state self.max_discovered_files = float("inf") if max_discovered_files is None else max_discovered_files self.discovered_file_count = 0
@property def change_datatype_actions(self): return self.metadata_params.get("change_datatype_actions", {})
[docs] def output_collection_def(self, name): tool_as_dict = self.metadata_params["tool"] output_collection_defs = tool_as_dict["output_collections"] if name not in output_collection_defs: return False output_collection_def_dict = output_collection_defs[name] output_collection_def = ToolOutputCollection.from_dict(name, output_collection_def_dict) return output_collection_def
[docs] def output_def(self, name): tool_as_dict = self.metadata_params["tool"] output_defs = tool_as_dict["outputs"] if name not in output_defs: return None output_def_dict = output_defs[name] output_def = ToolOutput.from_dict(name, output_def_dict) return output_def
[docs] def job_id(self): return "non-session bound job"
[docs] def get_hdca(self, object_id): hdca = self.import_store.sa_session.query(HistoryDatasetCollectionAssociation).find(int(object_id)) if hdca: self.export_store.add_dataset_collection(hdca) for collection_dataset in hdca.dataset_instances: include_files = True self.export_store.add_dataset(collection_dataset, include_files=include_files) self.export_store.collection_datasets.add(collection_dataset.id) return hdca
[docs] def add_dataset_collection(self, collection): self.export_store.add_dataset_collection(collection) for collection_dataset in collection.dataset_instances: include_files = True self.export_store.add_dataset(collection_dataset, include_files=include_files) self.export_store.collection_datasets.add(collection_dataset.id)
[docs] def add_output_dataset_association(self, name, dataset_instance): self.export_store.add_job_output_dataset_associations(self.get_job_id(), name, dataset_instance)
[docs] def get_job_id(self): return self.metadata_params["job_id_tag"]
[docs] def get_implicit_collection_jobs_association_id(self): return self.metadata_params.get("implicit_collection_jobs_association_id")
[docs]def collect_primary_datasets(job_context: Union[JobContext, SessionlessJobContext], output, input_ext): job_working_directory = job_context.job_working_directory # Loop through output file names, looking for generated primary # datasets in form specified by discover dataset patterns or in tool provided metadata. new_outdata_name = None primary_datasets: Dict[str, Dict[str, Union[HistoryDatasetAssociation, LibraryDatasetDatasetAssociation]]] = {} storage_callbacks: List[Callable] = [] for name, outdata in output.items(): primary_output_assigned = False dataset_collectors = [DEFAULT_DATASET_COLLECTOR] output_def = job_context.output_def(name) if output_def is not None: dataset_collectors = [ dataset_collector(description) for description in output_def.dataset_collector_descriptions ] filenames = {} for discovered_file in discover_files( name, job_context.tool_provided_metadata, dataset_collectors, job_working_directory, outdata ): job_context.increment_discovered_file_count() filenames[discovered_file.path] = discovered_file for filename_index, (filename, discovered_file) in enumerate(filenames.items()): extra_file_collector = discovered_file.collector fields_match = discovered_file.match if not fields_match: # Before I guess pop() would just have thrown an IndexError raise Exception(f"Problem parsing metadata fields for file {filename}") designation = fields_match.designation ext = fields_match.ext if ext == "input": ext = input_ext dbkey = fields_match.dbkey if dbkey == INPUT_DBKEY_TOKEN: dbkey = job_context.input_dbkey if filename_index == 0 and extra_file_collector.assign_primary_output: new_outdata_name = fields_match.name or f"{outdata.name} ({designation})" outdata.change_datatype(ext) outdata.dbkey = dbkey outdata.designation = designation outdata.dataset.external_filename = None # resets filename_override # Move data from temp location to dataset location if not outdata.dataset.purged: job_context.object_store.update_from_file(outdata.dataset, file_name=filename, create=True) primary_output_assigned = True continue if name not in primary_datasets: primary_datasets[name] = {} visible = fields_match.visible # Create new primary dataset new_primary_name = fields_match.name or f"{outdata.name} ({designation})" info = outdata.info # TODO: should be able to disambiguate files in different directories... new_primary_filename = os.path.split(filename)[-1] new_primary_datasets_attributes = job_context.tool_provided_metadata.get_new_dataset_meta_by_basename( name, new_primary_filename ) extra_files = None if new_primary_datasets_attributes: extra_files_path = new_primary_datasets_attributes.get("extra_files", None) if extra_files_path: extra_files = os.path.join(job_working_directory, extra_files_path) primary_data = job_context.create_dataset( ext, designation, visible, dbkey, new_primary_name, filename, extra_files=extra_files, info=info, init_from=outdata, dataset_attributes=new_primary_datasets_attributes, creating_job_id=job_context.get_job_id() if job_context else None, storage_callbacks=storage_callbacks, purged=outdata.dataset.purged, ) # Associate new dataset with job job_context.add_output_dataset_association(f"__new_primary_file_{name}|{designation}__", primary_data) job_context.add_datasets_to_history([primary_data], for_output_dataset=outdata) # Add dataset to return dict primary_datasets[name][designation] = primary_data if primary_output_assigned: outdata.name = new_outdata_name outdata.init_meta() if not outdata.dataset.purged: try: outdata.set_meta() except Exception: # We don't want to fail here on a single "bad" discovered dataset log.debug("set meta failed for %s", outdata, exc_info=True) outdata.state = HistoryDatasetAssociation.states.FAILED_METADATA outdata.set_peek() outdata.discovered = True sa_session = job_context.sa_session if sa_session: sa_session.add(outdata) # Move discovered outputs to storage and set metdata / peeks for callback in storage_callbacks: callback() return primary_datasets
[docs]def discover_files(output_name, tool_provided_metadata, extra_file_collectors, job_working_directory, matchable): extra_file_collectors = extra_file_collectors if extra_file_collectors and extra_file_collectors[0].discover_via == "tool_provided_metadata": # just load entries from tool provided metadata... assert len(extra_file_collectors) == 1 extra_file_collector = extra_file_collectors[0] target_directory = discover_target_directory(extra_file_collector.directory, job_working_directory) for dataset in tool_provided_metadata.get_new_datasets(output_name): filename = dataset["filename"] path = os.path.join(target_directory, filename) yield DiscoveredFile( path, extra_file_collector, JsonCollectedDatasetMatch(dataset, extra_file_collector, filename, path=path), ) else: for match, collector in walk_over_file_collectors(extra_file_collectors, job_working_directory, matchable): yield DiscoveredFile(match.path, collector, match)
[docs]def walk_over_file_collectors(extra_file_collectors, job_working_directory, matchable): for extra_file_collector in extra_file_collectors: assert extra_file_collector.discover_via == "pattern" for match in walk_over_extra_files( extra_file_collector.directory, extra_file_collector, job_working_directory, matchable ): yield match, extra_file_collector
[docs]def walk_over_extra_files(target_dir, extra_file_collector, job_working_directory, matchable, parent_paths=None): """ Walks through all files in a given directory, and returns all files that match the given collector's match criteria. If the collector has the recurse flag enabled, will also recursively descend into child folders. """ parent_paths = parent_paths or [] def _walk(target_dir, extra_file_collector, job_working_directory, matchable, parent_paths): directory = discover_target_directory(target_dir, job_working_directory) if os.path.isdir(directory): for filename in os.listdir(directory): path = os.path.join(directory, filename) if os.path.isdir(path): if extra_file_collector.recurse: new_parent_paths = parent_paths[:] new_parent_paths.append(filename) # The current directory is already validated, so use that as the next job_working_directory when recursing yield from _walk( filename, extra_file_collector, directory, matchable, parent_paths=new_parent_paths ) else: match = extra_file_collector.match(matchable, filename, path=path, parent_paths=parent_paths) if match: yield match yield from extra_file_collector.sort( _walk(target_dir, extra_file_collector, job_working_directory, matchable, parent_paths) )
[docs]def dataset_collector(dataset_collection_description): if dataset_collection_description is DEFAULT_DATASET_COLLECTOR_DESCRIPTION: # Use 'is' and 'in' operators, so lets ensure this is # treated like a singleton. return DEFAULT_DATASET_COLLECTOR else: if dataset_collection_description.discover_via == "pattern": return DatasetCollector(dataset_collection_description) else: return ToolMetadataDatasetCollector(dataset_collection_description)
[docs]class ToolMetadataDatasetCollector:
[docs] def __init__(self, dataset_collection_description): self.discover_via = dataset_collection_description.discover_via self.default_dbkey = dataset_collection_description.default_dbkey self.default_ext = dataset_collection_description.default_ext self.default_visible = dataset_collection_description.default_visible self.directory = dataset_collection_description.directory self.assign_primary_output = dataset_collection_description.assign_primary_output
[docs]class DatasetCollector:
[docs] def __init__(self, dataset_collection_description): self.discover_via = dataset_collection_description.discover_via # dataset_collection_description is an abstract description # built from the tool parsing module - see galaxy.tool_util.parser.output_collection_def self.sort_key = dataset_collection_description.sort_key self.sort_reverse = dataset_collection_description.sort_reverse self.sort_comp = dataset_collection_description.sort_comp self.pattern = dataset_collection_description.pattern self.default_dbkey = dataset_collection_description.default_dbkey self.default_ext = dataset_collection_description.default_ext self.default_visible = dataset_collection_description.default_visible self.directory = dataset_collection_description.directory self.assign_primary_output = dataset_collection_description.assign_primary_output self.recurse = dataset_collection_description.recurse self.match_relative_path = dataset_collection_description.match_relative_path
def _pattern_for_dataset(self, dataset_instance=None): token_replacement = r"\d+" if dataset_instance: token_replacement = str(dataset_instance.id) return self.pattern.replace(DATASET_ID_TOKEN, token_replacement)
[docs] def match(self, dataset_instance, filename, path=None, parent_paths=None): pattern = self._pattern_for_dataset(dataset_instance) if self.match_relative_path and parent_paths: filename = os.path.join(*parent_paths, filename) match_object = None if re_match := re.match(pattern, filename): match_object = RegexCollectedDatasetMatch(re_match, self, filename, path=path) return match_object
[docs] def sort(self, matches): reverse = self.sort_reverse sort_key = self.sort_key sort_comp = self.sort_comp assert sort_key in ["filename", "dbkey", "name", "designation"] assert sort_comp in ["lexical", "numeric"] key = operator.attrgetter(sort_key) if sort_comp == "numeric": key = _compose(int, key) return sorted(matches, key=key, reverse=reverse)
def _compose(f, g): return lambda x: f(g(x)) DEFAULT_DATASET_COLLECTOR = DatasetCollector(DEFAULT_DATASET_COLLECTOR_DESCRIPTION) DEFAULT_TOOL_PROVIDED_DATASET_COLLECTOR = ToolMetadataDatasetCollector(ToolProvidedMetadataDatasetCollection())
[docs]def read_exit_code_from(exit_code_file, id_tag): """Read exit code reported for a Galaxy job.""" try: # This should be an 8-bit exit code, but read ahead anyway: exit_code_str = open(exit_code_file).read(32) except Exception: # By default, the exit code is 0, which typically indicates success. exit_code_str = "0" try: # Decode the exit code. If it's bogus, then just use 0. exit_code = int(exit_code_str) except ValueError: galaxy_id_tag = id_tag log.warning(f"({galaxy_id_tag}) Exit code '{exit_code_str}' invalid. Using 0.") exit_code = 0 return exit_code
[docs]def default_exit_code_file(files_dir, id_tag): return os.path.join(files_dir, f"galaxy_{id_tag}.ec")
[docs]def collect_extra_files( object_store: ObjectStore, dataset: "DatasetInstance", job_working_directory: str, outputs_to_working_directory: bool = False, ): # TODO: should this use compute_environment to determine the extra files path ? assert dataset.dataset real_file_name = file_name = dataset.dataset.extra_files_path_name_from(object_store) if outputs_to_working_directory: # OutputsToWorkingDirectoryPathRewriter always rewrites extra files to uuid path, # so we have to collect from that path even if the real extra files path is dataset_N_files file_name = f"dataset_{dataset.dataset.uuid}_files" output_location = "outputs" temp_file_path = os.path.join(job_working_directory, output_location, file_name) if not os.path.exists(temp_file_path): # Fall back to working dir, remove in 23.2 output_location = "working" temp_file_path = os.path.join(job_working_directory, output_location, file_name) if not os.path.exists(temp_file_path): # no outputs to working directory, but may still need to push form cache to backend temp_file_path = dataset.extra_files_path try: # This skips creation of directories - object store # automatically creates them. However, empty directories will # not be created in the object store at all, which might be a # problem. persist_extra_files( object_store=object_store, src_extra_files_path=temp_file_path, primary_data=dataset, extra_files_path_name=real_file_name, ) except Exception as e: log.debug("Error in collect_associated_files: %s", unicodify(e)) # Handle composite datatypes of auto_primary_file type if dataset.datatype.composite_type == "auto_primary_file" and not dataset.has_data(): try: with NamedTemporaryFile(mode="w") as temp_fh: temp_fh.write(dataset.datatype.generate_primary_file(dataset)) temp_fh.flush() object_store.update_from_file(dataset.dataset, file_name=temp_fh.name, create=True) dataset.set_size() except Exception as e: log.warning( "Unable to generate primary composite file automatically for %s: %s", dataset.dataset.id, unicodify(e) )
[docs]def collect_shrinked_content_from_path(path): try: with open(path, "rb") as fh: return shrink_and_unicodify(fh.read().strip()) except FileNotFoundError: return None