Warning

This document is for an in-development version of Galaxy. You can alternatively view this page in the latest release if it exists or view the top of the latest release's documentation.

Source code for galaxy.tools.wrappers

import abc
import logging
import os
import shlex
import tempfile
from functools import total_ordering
from typing import (
    Any,
    cast,
    Dict,
    Iterable,
    Iterator,
    KeysView,
    List,
    Optional,
    Sequence,
    Tuple,
    TYPE_CHECKING,
    Union,
)

from packaging.version import Version
from typing_extensions import TypeAlias

from galaxy.model import (
    DatasetCollection,
    DatasetCollectionElement,
    DatasetCollectionInstance,
    DatasetInstance,
    HasTags,
    HistoryDatasetCollectionAssociation,
)
from galaxy.model.metadata import FileParameter
from galaxy.model.none_like import NoneDataset
from galaxy.security.object_wrapper import wrap_with_safe_string
from galaxy.tools.parameters.basic import BooleanToolParameter
from galaxy.tools.parameters.wrapped_json import (
    data_collection_input_to_staging_path_and_source_path,
    data_input_to_staging_path_and_source_path,
)
from galaxy.util import (
    filesystem_safe_string,
    string_as_bool,
)

if TYPE_CHECKING:
    from galaxy.datatypes.registry import Registry
    from galaxy.job_execution.compute_environment import ComputeEnvironment
    from galaxy.model.metadata import MetadataCollection
    from galaxy.tools import Tool
    from galaxy.tools.parameters.basic import (
        SelectToolParameter,
        ToolParameter,
    )

log = logging.getLogger(__name__)

# Fields in tool config files corresponding to paths (e.g .loc or .len)
# must have one of the following field names, and all such fields are
# assumed to be paths. This is to allow remote ComputeEnvironments (such
# as one used by Pulsar) to determine what values to rewrite or transfer.
PATH_ATTRIBUTES = ["len_path", "path"]


[docs]class ToolParameterValueWrapper: """ Base class for object that Wraps a Tool Parameter and Value. """ value: Optional[Union[str, List[str]]] input: "ToolParameter" def __bool__(self) -> bool: return bool(self.value) __nonzero__ = __bool__
[docs] def get_display_text(self, quote: bool = True) -> str: """ Returns a string containing the value that would be displayed to the user in the tool interface. When quote is True (default), the string is escaped for e.g. command-line usage. """ rval = self.input.value_to_display_text(self.value) or "" if quote: return shlex.quote(rval) return rval
[docs]class RawObjectWrapper(ToolParameterValueWrapper): """ Wraps an object so that __str__ returns module_name:class_name. """
[docs] def __init__(self, obj: Any): self.obj = obj
def __bool__(self) -> bool: return bool( self.obj ) # FIXME: would it be safe/backwards compatible to rename .obj to .value, so that we can just inherit this method? __nonzero__ = __bool__ def __str__(self) -> str: try: return f"{self.obj.__module__}:{self.obj.__class__.__name__}" except Exception: # Most likely None, which lacks __module__. return str(self.obj) def __getattr__(self, key: Any) -> Any: return getattr(self.obj, key)
[docs]@total_ordering class InputValueWrapper(ToolParameterValueWrapper): """ Wraps an input so that __str__ gives the "param_dict" representation. """
[docs] def __init__( self, input: "ToolParameter", value: Optional[str], other_values: Optional[Dict[str, str]] = None, profile: Optional[float] = None, ) -> None: self.input = input if ( value is None and input.type == "text" and input.optional and input.optionality_inferred and (profile is None or Version(str(profile)) < Version("23.0")) ): # Tools with old profile versions may treat an optional text parameter as `""` value = "" self.value = value self._other_values: Dict[str, str] = other_values or {}
def _get_cast_values(self, other: Any) -> Tuple[Union[str, int, float, bool, None], Any]: if isinstance(self.input, BooleanToolParameter) and isinstance(other, str): if other in (self.input.truevalue, self.input.falsevalue): return str(self), other else: return bool(self), string_as_bool(other) # For backward compatibility, allow `$wrapper != ""` for optional non-text param if self.input.optional and self.value is None: if isinstance(other, str): return str(self), other else: return None, other cast_table = { "text": str, "integer": int, "float": float, "boolean": bool, } return cast(Union[str, int, float, bool], cast_table.get(self.input.type, str)(self)), other def __eq__(self, other: Any) -> bool: casted_self, casted_other = self._get_cast_values(other) return casted_self == casted_other def __ne__(self, other: Any) -> bool: return not self == other def __str__(self) -> str: to_param_dict_string = self.input.to_param_dict_string(self.value, self._other_values) if isinstance(to_param_dict_string, list): return ",".join(to_param_dict_string) else: return to_param_dict_string def __iter__(self) -> Iterable[str]: to_param_dict_string = self.input.to_param_dict_string(self.value, self._other_values) if not isinstance(to_param_dict_string, list): return iter([to_param_dict_string]) else: return iter(to_param_dict_string) def __getattr__(self, key: Any) -> Any: return getattr(self.value, key) def __gt__(self, other: Any) -> bool: casted_self, casted_other = self._get_cast_values(other) return casted_self > casted_other def __int__(self) -> int: return int(float(self)) def __float__(self) -> float: return float(str(self))
[docs]class SelectToolParameterWrapper(ToolParameterValueWrapper): """ Wraps a SelectTooParameter so that __str__ returns the selected value, but all other attributes are accessible. """ input: "SelectToolParameter"
[docs] class SelectToolParameterFieldWrapper: """ Provide access to any field by name or index for this particular value. Only applicable for dynamic_options selects, which have more than simple 'options' defined (name, value, selected). """
[docs] def __init__( self, input: "SelectToolParameter", value: Union[str, List[str]], other_values: Optional[Dict[str, str]], compute_environment: Optional["ComputeEnvironment"], ) -> None: self._input = input self._value = value self._other_values = other_values self._fields: Dict[str, List[str]] = {} self._compute_environment = compute_environment
def __getattr__(self, name: str) -> Any: if name not in self._fields: if isinstance(self._value, DatasetInstance): self._fields[name] = [self._input.options.get_option_from_dataset(self._value)[name]] else: self._fields[name] = self._input.options.get_field_by_name_for_value( name, self._value, None, self._other_values ) values = map(str, self._fields[name]) if name in PATH_ATTRIBUTES and self._compute_environment: # If we infer this is a path, rewrite it if needed. new_values = [] for value in values: rewrite_value = self._compute_environment.unstructured_path_rewrite(value) if rewrite_value: new_values.append(rewrite_value) else: new_values.append(value) return self._input.separator.join(new_values) return self._input.separator.join(values)
[docs] def __init__( self, input: "SelectToolParameter", value: Union[str, List[str]], other_values: Optional[Dict[str, str]] = None, compute_environment: Optional["ComputeEnvironment"] = None, ): self.input = input self.value: Union[str, List[str]] = value self.input.value_label = input.value_to_display_text(value) self._other_values = other_values or {} self.compute_environment = compute_environment self.fields = self.SelectToolParameterFieldWrapper(input, value, other_values, self.compute_environment)
def __eq__(self, other: Any) -> bool: if isinstance(other, str): if other == "" and self.value in (None, []): # Allow $wrapper == '' for select (self.value is None) and multiple select (self.value is []) params return True return str(self) == other else: return super().__eq__(other) def __ne__(self, other: Any) -> bool: return not self == other def __str__(self) -> str: # Assuming value is never a path - otherwise would need to pass # along following argument value_map=self._path_rewriter. return str(self.input.to_param_dict_string(self.value, other_values=self._other_values)) def __add__(self, x: Any) -> str: return f"{self}{x}" def __getattr__(self, key: Any) -> Any: return getattr(self.input, key) def __iter__(self) -> Iterable[str]: if not self.input.multiple: raise Exception("Tried to iterate over a non-multiple parameter.") return self.value.__iter__()
[docs]class DatasetFilenameWrapper(ToolParameterValueWrapper): """ Wraps a dataset so that __str__ returns the filename, but all other attributes are accessible. """ false_path: Optional[str]
[docs] class MetadataWrapper: """ Wraps a Metadata Collection to return MetadataParameters wrapped according to the metadata spec. Methods implemented to match behavior of a Metadata Collection. """
[docs] def __init__( self, dataset: DatasetInstance, compute_environment: Optional["ComputeEnvironment"] = None, ) -> None: self.dataset = dataset self.metadata: MetadataCollection = dataset.metadata self.compute_environment = compute_environment
def __getattr__(self, name: str) -> Any: rval = self.metadata.get(name, None) if name in self.metadata.spec: if rval is None: rval = self.metadata.spec[name].no_value metadata_param = self.metadata.spec[name].param rval = metadata_param.to_safe_string(rval) if isinstance(metadata_param, FileParameter) and self.compute_environment: rewrite = self.compute_environment.input_metadata_rewrite(self.dataset, rval) if rewrite is not None: rval = rewrite # Store this value, so we don't need to recalculate if needed # again setattr(self, name, rval) else: # escape string value of non-defined metadata value rval = wrap_with_safe_string(rval) return rval def __bool__(self) -> bool: return bool(self.metadata.__nonzero__()) __nonzero__ = __bool__ def __iter__(self) -> Iterator[Any]: return self.metadata.__iter__()
[docs] def element_is_set(self, name: str) -> bool: return self.metadata.element_is_set(name)
[docs] def get(self, key: str, default: Any = None) -> Any: try: return getattr(self, key) except Exception: return default
[docs] def items(self) -> Iterator[Tuple[str, Any]]: return iter((k, self.get(k)) for k, v in self.metadata.items())
[docs] def __init__( self, dataset: Optional[Union[DatasetInstance, DatasetCollectionElement]], datatypes_registry: Optional["Registry"] = None, tool: Optional["Tool"] = None, name: Optional[str] = None, compute_environment: Optional["ComputeEnvironment"] = None, identifier: Optional[str] = None, io_type: str = "input", formats: Optional[List[str]] = None, ) -> None: dataset_instance: Optional[DatasetInstance] = None if not dataset: self.dataset = cast( DatasetInstance, wrap_with_safe_string( NoneDataset(datatypes_registry=datatypes_registry), no_wrap_classes=ToolParameterValueWrapper, ), ) else: # Tool wrappers should not normally be accessing .dataset directly, # so we will wrap it and keep the original around for file paths # Should we name this .value to maintain consistency with most other ToolParameterValueWrapper? if isinstance(dataset, DatasetCollectionElement): identifier = dataset.element_identifier dataset_instance = dataset.hda else: dataset_instance = dataset assert dataset_instance if formats: direct_match, target_ext, converted_dataset = dataset_instance.find_conversion_destination(formats) if not direct_match and target_ext and converted_dataset: dataset_instance = converted_dataset self.unsanitized: DatasetInstance = dataset_instance self.dataset = wrap_with_safe_string(dataset_instance, no_wrap_classes=ToolParameterValueWrapper) self.metadata = self.MetadataWrapper(dataset_instance, compute_environment) if isinstance(dataset_instance, HasTags): self.groups = { tag.user_value.lower() for tag in dataset_instance.tags # type:ignore[unused-ignore, attr-defined] if tag.user_tname == "group" } else: # May be a 'FakeDatasetAssociation' self.groups = set() self.compute_environment = compute_environment # TODO: lazy initialize this... self.__io_type = io_type self.false_path: Optional[str] = None if dataset_instance: if self.__io_type == "input": path_rewrite = ( compute_environment and dataset_instance and compute_environment.input_path_rewrite(dataset_instance) ) if path_rewrite: self.false_path = path_rewrite else: path_rewrite = compute_environment and compute_environment.output_path_rewrite(dataset_instance) if path_rewrite: self.false_path = path_rewrite self.datatypes_registry = datatypes_registry self._element_identifier = identifier
@property def element_identifier(self) -> str: identifier = self._element_identifier if identifier is None: identifier = self.name return identifier @property def file_ext(self) -> str: return str( getattr( self.unsanitized.datatype, "file_ext_export_alias", self.dataset.extension, ) ) @property def name_and_ext(self) -> str: return f"{self.element_identifier}.{self.file_ext}"
[docs] def get_staging_path(self, invalid_chars: Sequence[str] = ("/",)) -> str: """ Strip leading dots, unicode null chars, replace `/` with `_`, truncate at 255 characters. Not safe for commandline use, would need additional sanitization. """ max_len = 254 - len(self.file_ext) safe_element_identifier = filesystem_safe_string( self.element_identifier, max_len=max_len, invalid_chars=invalid_chars ) return f"{safe_element_identifier}.{self.file_ext}"
@property def all_metadata_files(self) -> List[Tuple[str, str]]: return self.unsanitized.get_metadata_file_paths_and_extensions() if self else []
[docs] def serialize(self, invalid_chars: Sequence[str] = ("/",)) -> Dict[str, Any]: return data_input_to_staging_path_and_source_path(self, invalid_chars=invalid_chars) if self else {}
@property def is_collection(self) -> bool: return False
[docs] def is_of_type(self, *exts: str) -> bool: datatypes = [] if not self.datatypes_registry: raise Exception("datatypes_registry is required to use 'is_of_type'.") for e in exts: datatype = self.datatypes_registry.get_datatype_by_extension(e) if datatype is not None: datatypes.append(datatype) else: log.warning( f"Datatype class not found for extension '{e}', which is used as parameter of 'is_of_type()' method" ) return self.dataset.datatype.matches_any(datatypes)
def __str__(self) -> str: if self.false_path is not None: return self.false_path else: return str(self.unsanitized.get_file_name()) @property def file_name(self) -> str: return str(self) def __getattr__(self, key: Any) -> Any: if key in ("extra_files_path", "files_path"): if not self.compute_environment: # Only happens in WrappedParameters context, refactor! return self.unsanitized.extra_files_path if self.__io_type == "input": return self.compute_environment.input_extra_files_rewrite(self.unsanitized) else: return self.compute_environment.output_extra_files_rewrite(self.unsanitized) elif key == "serialize": return self.serialize else: return getattr(self.dataset, key) def __bool__(self) -> bool: return bool(self.dataset) __nonzero__ = __bool__
[docs]class HasDatasets: job_working_directory: Optional[str] @abc.abstractmethod def __iter__(self) -> Iterator[Any]: pass def _dataset_wrapper( self, dataset: Union[DatasetInstance, DatasetCollectionElement], **kwargs: Any ) -> DatasetFilenameWrapper: return DatasetFilenameWrapper(dataset, **kwargs)
[docs] def paths_as_file(self, sep: str = "\n") -> str: contents = sep.join(map(str, self)) with tempfile.NamedTemporaryFile( mode="w+", prefix="gx_file_list", dir=self.job_working_directory, delete=False ) as fh: fh.write(contents) filepath = fh.name return filepath
[docs]class DatasetListWrapper(List[DatasetFilenameWrapper], ToolParameterValueWrapper, HasDatasets): """ """
[docs] def __init__( self, job_working_directory: Optional[str], datasets: Union[ Sequence[ Union[ None, DatasetInstance, DatasetCollectionInstance, DatasetCollectionElement, ] ], DatasetInstance, ], **kwargs: Any, ) -> None: self._dataset_elements_cache: Dict[str, List[DatasetFilenameWrapper]] = {} if not isinstance(datasets, Sequence): datasets = [datasets] def to_wrapper( dataset: Union[ None, DatasetInstance, DatasetCollectionInstance, DatasetCollectionElement, ] ) -> DatasetFilenameWrapper: if isinstance(dataset, DatasetCollectionElement): dataset2 = dataset.dataset_instance kwargs["identifier"] = dataset.element_identifier else: dataset2 = dataset return self._dataset_wrapper(dataset2, **kwargs) list.__init__(self, map(to_wrapper, datasets)) self.job_working_directory = job_working_directory
[docs] @staticmethod def to_dataset_instances( dataset_instance_sources: Any, ) -> List[Union[None, DatasetInstance]]: dataset_instances: List[Optional[DatasetInstance]] = [] if not isinstance(dataset_instance_sources, list): dataset_instance_sources = [dataset_instance_sources] for dataset_instance_source in dataset_instance_sources: if dataset_instance_source is None: dataset_instances.append(dataset_instance_source) elif getattr(dataset_instance_source, "history_content_type", None) == "dataset": dataset_instances.append(dataset_instance_source) elif getattr(dataset_instance_source, "hda", None): dataset_instances.append(dataset_instance_source) elif hasattr(dataset_instance_source, "child_collection"): dataset_instances.extend(dataset_instance_source.child_collection.dataset_elements) else: dataset_instances.extend(dataset_instance_source.collection.dataset_elements) return dataset_instances
[docs] def get_datasets_for_group(self, group: str) -> List[DatasetFilenameWrapper]: group = str(group).lower() if not self._dataset_elements_cache.get(group): wrappers = [] for element in self: if any(t for t in element.tags if t.user_tname.lower() == "group" and t.value.lower() == group): wrappers.append(element) self._dataset_elements_cache[group] = wrappers return self._dataset_elements_cache[group]
[docs] def serialize(self, invalid_chars: Sequence[str] = ("/",)) -> List[Dict[str, Any]]: return [v.serialize(invalid_chars) for v in self]
def __str__(self) -> str: return ",".join(map(str, self)) def __bool__(self) -> bool: # Fail `#if $param` checks in cheetah if optional input is not provided return any(self) __nonzero__ = __bool__
DatasetCollectionElementWrapper: TypeAlias = Union["DatasetCollectionWrapper", DatasetFilenameWrapper]
[docs]class DatasetCollectionWrapper(ToolParameterValueWrapper, HasDatasets): name: Optional[str] collection: DatasetCollection
[docs] def __init__( self, job_working_directory: Optional[str], has_collection: Union[None, DatasetCollectionElement, HistoryDatasetCollectionAssociation], datatypes_registry: "Registry", **kwargs: Any, ) -> None: super().__init__() self.job_working_directory = job_working_directory self._dataset_elements_cache: Dict[str, List[DatasetFilenameWrapper]] = {} self._element_identifiers_extensions_paths_and_metadata_files: Optional[List[List[Any]]] = None self.datatypes_registry = datatypes_registry kwargs["datatypes_registry"] = datatypes_registry self.kwargs = kwargs if has_collection is None: self.__input_supplied = False return else: self.__input_supplied = True if isinstance(has_collection, HistoryDatasetCollectionAssociation): collection = has_collection.collection self.name = has_collection.name elif isinstance(has_collection, DatasetCollectionElement): collection = has_collection.child_collection self.name = has_collection.element_identifier else: collection = has_collection self.name = None self.collection = collection elements = collection.elements element_instances: Dict[str, DatasetCollectionElementWrapper] = {} element_instance_list: List[DatasetCollectionElementWrapper] = [] for dataset_collection_element in elements: element_object = dataset_collection_element.element_object element_identifier = dataset_collection_element.element_identifier if dataset_collection_element.is_collection: element_wrapper: DatasetCollectionElementWrapper = DatasetCollectionWrapper( job_working_directory, dataset_collection_element, **kwargs ) else: element_wrapper = self._dataset_wrapper(element_object, identifier=element_identifier, **kwargs) element_instances[element_identifier] = element_wrapper element_instance_list.append(element_wrapper) self.__element_instances = element_instances self.__element_instance_list = element_instance_list
[docs] def get_datasets_for_group(self, group: str) -> List[DatasetFilenameWrapper]: group = str(group).lower() if not self._dataset_elements_cache.get(group): wrappers = [] for element in self.collection.dataset_elements: if any( t for t in element.dataset_instance.tags if t.user_tname.lower() == "group" and t.value.lower() == group ): wrappers.append( self._dataset_wrapper( element.element_object, identifier=element.element_identifier, **self.kwargs ) ) self._dataset_elements_cache[group] = wrappers return self._dataset_elements_cache[group]
[docs] def keys(self) -> Union[List[str], KeysView[Any]]: if not self.__input_supplied: return [] return self.__element_instances.keys()
@property def is_collection(self) -> bool: return True @property def element_identifier(self) -> Optional[str]: return self.name @property def all_paths(self) -> List[str]: return [path for _, _, path, _ in self.element_identifiers_extensions_paths_and_metadata_files] @property def all_metadata_files(self) -> List[List[str]]: return [ metadata_files for _, _, _, metadata_files in self.element_identifiers_extensions_paths_and_metadata_files ] @property def element_identifiers_extensions_paths_and_metadata_files( self, ) -> List[List[Any]]: if self._element_identifiers_extensions_paths_and_metadata_files is None: if self.collection: result = self.collection.element_identifiers_extensions_paths_and_metadata_files self._element_identifiers_extensions_paths_and_metadata_files = result return result else: return [] return self._element_identifiers_extensions_paths_and_metadata_files
[docs] def get_all_staging_paths( self, invalid_chars: Sequence[str] = ("/",), include_collection_name: bool = False, ) -> List[str]: safe_element_identifiers = [] for element_identifiers, extension, *_ in self.element_identifiers_extensions_paths_and_metadata_files: datatype = self.datatypes_registry.get_datatype_by_extension(extension) if datatype: extension = getattr(datatype, "file_ext_export_alias", extension) current_element_identifiers = [] for element_identifier in element_identifiers: max_len = 254 - len(extension) if include_collection_name: max_len = max_len - (len(self.name or "") + 1) assert max_len >= 1, "Could not stage element, element identifier is too long" current_element_identifier = filesystem_safe_string( element_identifier, max_len=max_len, invalid_chars=invalid_chars ) if include_collection_name and self.name: current_element_identifier = f"{filesystem_safe_string(self.name, invalid_chars=invalid_chars)}{os.path.sep}{current_element_identifier}" current_element_identifiers.append(current_element_identifier) safe_element_identifiers.append(f"{os.path.sep.join(current_element_identifiers)}.{extension}") return safe_element_identifiers
[docs] def serialize( self, invalid_chars: Sequence[str] = ("/",), include_collection_name: bool = False, ) -> List[Dict[str, Any]]: return data_collection_input_to_staging_path_and_source_path( self, invalid_chars=invalid_chars, include_collection_name=include_collection_name, )
@property def is_input_supplied(self) -> bool: return self.__input_supplied def __getitem__(self, key: Union[str, int]) -> Optional[DatasetCollectionElementWrapper]: if not self.__input_supplied: return None if isinstance(key, int): return self.__element_instance_list[key] else: return self.__element_instances[key] def __getattr__(self, key: str) -> Optional[DatasetCollectionElementWrapper]: if not self.__input_supplied: return None try: return self.__element_instances[key] except KeyError: raise AttributeError() def __iter__( self, ) -> Iterator[DatasetCollectionElementWrapper]: if not self.__input_supplied: return [].__iter__() return self.__element_instance_list.__iter__() def __bool__(self) -> bool: # Fail `#if $param` checks in cheetah is optional input # not specified or if resulting collection is empty. return self.__input_supplied and bool(self.__element_instance_list) __nonzero__ = __bool__
[docs]class ElementIdentifierMapper: """Track mapping of dataset collection elements datasets to element identifiers."""
[docs] def __init__(self, input_datasets: Optional[Dict[str, Any]] = None) -> None: if input_datasets is not None: self.identifier_key_dict = {v: f"{k}|__identifier__" for k, v in input_datasets.items()} else: self.identifier_key_dict = {}
[docs] def identifier(self, dataset_value: str, input_values: Dict[str, str]) -> Optional[str]: element_identifier = None if identifier_key := self.identifier_key_dict.get(dataset_value, None): element_identifier = input_values.get(identifier_key, None) return element_identifier