Warning
This document is for an in-development version of Galaxy. You can alternatively view this page in the latest release if it exists or view the top of the latest release's documentation.
Source code for galaxy_test.api.test_jobs
import datetime
import json
import os
import time
import urllib.parse
from operator import itemgetter
from unittest import SkipTest
import pytest
import requests
from dateutil.parser import isoparse
from galaxy_test.api.test_tools import TestsTools
from galaxy_test.base.api_asserts import assert_status_code_is_ok
from galaxy_test.base.populators import (
DatasetCollectionPopulator,
DatasetPopulator,
skip_without_tool,
wait_on,
wait_on_state,
WorkflowPopulator,
)
from ._framework import ApiTestCase
[docs]class TestJobsApi(ApiTestCase, TestsTools):
dataset_populator: DatasetPopulator
[docs] def setUp(self):
super().setUp()
self.workflow_populator = WorkflowPopulator(self.galaxy_interactor)
self.dataset_populator = DatasetPopulator(self.galaxy_interactor)
self.dataset_collection_populator = DatasetCollectionPopulator(self.galaxy_interactor)
[docs] @pytest.mark.require_new_history
def test_index(self, history_id):
# Create HDA to ensure at least one job exists...
self.__history_with_new_dataset(history_id)
jobs = self.__jobs_index()
assert "__DATA_FETCH__" in map(itemgetter("tool_id"), jobs)
[docs] @pytest.mark.require_new_history
def test_system_details_admin_only(self, history_id):
self.__history_with_new_dataset(history_id)
jobs = self.__jobs_index(admin=False)
job = jobs[0]
assert job["external_id"] is None
jobs = self.__jobs_index(admin=True)
job = jobs[0]
assert job["command_line"]
assert job["external_id"]
[docs] @pytest.mark.require_new_history
def test_admin_job_list(self, history_id):
self.__history_with_new_dataset(history_id)
jobs_response = self._get("jobs?view=admin_job_list", admin=False)
assert jobs_response.status_code == 403
assert jobs_response.json()["err_msg"] == "Only admins can use the admin_job_list view"
jobs = self._get("jobs?view=admin_job_list", admin=True).json()
job = jobs[0]
self._assert_has_keys(job, "command_line", "external_id", "handler")
[docs] @pytest.mark.require_new_history
def test_job_list_collection_view(self, history_id):
self.__history_with_new_dataset(history_id)
jobs_response = self._get("jobs?view=collection")
self._assert_status_code_is_ok(jobs_response)
jobs = jobs_response.json()
job = jobs[0]
self._assert_has_keys(job, "id", "tool_id", "state")
[docs] @pytest.mark.require_new_history
def test_job_list_default_view(self, history_id):
self.__history_with_new_dataset(history_id)
jobs_response = self._get(f"jobs?history_id={history_id}")
self._assert_status_code_is_ok(jobs_response)
jobs = jobs_response.json()
job = jobs[0]
self._assert_has_keys(job, "id", "tool_id", "state")
[docs] @pytest.mark.require_new_history
def test_index_state_filter(self, history_id):
# Initial number of ok jobs
original_count = len(self.__uploads_with_state("ok"))
# Run through dataset upload to ensure num uplaods at least greater
# by 1.
self.__history_with_ok_dataset(history_id)
# Verify number of ok jobs is actually greater.
count_increased = False
for _ in range(10):
new_count = len(self.__uploads_with_state("ok"))
if original_count < new_count:
count_increased = True
break
time.sleep(0.1)
if not count_increased:
template = "Jobs in ok state did not increase (was %d, now %d)"
message = template % (original_count, new_count)
raise AssertionError(message)
[docs] @pytest.mark.require_new_history
def test_index_date_filter(self, history_id):
two_weeks_ago = (datetime.datetime.utcnow() - datetime.timedelta(14)).isoformat()
last_week = (datetime.datetime.utcnow() - datetime.timedelta(7)).isoformat()
before = datetime.datetime.utcnow().isoformat()
today = before[:10]
tomorrow = (datetime.datetime.utcnow() + datetime.timedelta(1)).isoformat()[:10]
self.__history_with_new_dataset(history_id)
after = datetime.datetime.utcnow().isoformat()
# Test using dates
jobs = self.__jobs_index(data={"date_range_min": today, "date_range_max": tomorrow})
assert len(jobs) > 0
today_job = jobs[0]
today_job_id = today_job["id"]
# Test using datetimes
jobs = self.__jobs_index(data={"date_range_min": before, "date_range_max": after})
assert today_job_id in map(itemgetter("id"), jobs), f"before: {before}, after: {after}, job: {today_job}"
jobs = self.__jobs_index(data={"date_range_min": two_weeks_ago, "date_range_max": last_week})
assert today_job_id not in map(itemgetter("id"), jobs)
[docs] @pytest.mark.require_new_history
def test_index_history(self, history_id):
self.__history_with_new_dataset(history_id)
jobs = self.__jobs_index(data={"history_id": history_id})
assert len(jobs) > 0
with self.dataset_populator.test_history() as other_history_id:
jobs = self.__jobs_index(data={"history_id": other_history_id})
assert len(jobs) == 0
[docs] @pytest.mark.require_new_history
@skip_without_tool("cat1")
def test_index_workflow_and_invocation_filter(self, history_id):
workflow_simple = """
class: GalaxyWorkflow
name: Simple Workflow
inputs:
input1: data
outputs:
wf_output_1:
outputSource: first_cat/out_file1
steps:
first_cat:
tool_id: cat1
in:
input1: input1
"""
summary = self.workflow_populator.run_workflow(
workflow_simple, history_id=history_id, test_data={"input1": "hello world"}
)
invocation_id = summary.invocation_id
workflow_id = self._get(f"invocations/{invocation_id}").json()["workflow_id"]
self.workflow_populator.wait_for_invocation(workflow_id, invocation_id)
jobs1 = self.__jobs_index(data={"workflow_id": workflow_id})
assert len(jobs1) == 1
jobs2 = self.__jobs_index(data={"invocation_id": invocation_id})
assert len(jobs2) == 1
assert jobs1 == jobs2
[docs] @pytest.mark.require_new_history
@skip_without_tool("multi_data_optional")
def test_index_workflow_filter_implicit_jobs(self, history_id):
workflow_id = self.workflow_populator.upload_yaml_workflow(
"""
class: GalaxyWorkflow
inputs:
input_datasets: collection
steps:
multi_data_optional:
tool_id: multi_data_optional
in:
input1: input_datasets
"""
)
hdca_id = self.dataset_collection_populator.create_list_of_list_in_history(history_id).json()
self.dataset_populator.wait_for_history(history_id, assert_ok=True)
inputs = {
"0": self.dataset_populator.ds_entry(hdca_id),
}
invocation_id = self.workflow_populator.invoke_workflow_and_wait(
workflow_id, history_id=history_id, inputs=inputs
).json()["id"]
jobs1 = self.__jobs_index(data={"workflow_id": workflow_id})
jobs2 = self.__jobs_index(data={"invocation_id": invocation_id})
assert len(jobs1) == len(jobs2) == 1
second_invocation_id = self.workflow_populator.invoke_workflow_and_wait(
workflow_id, history_id=history_id, inputs=inputs
).json()["id"]
workflow_jobs = self.__jobs_index(data={"workflow_id": workflow_id})
second_invocation_jobs = self.__jobs_index(data={"invocation_id": second_invocation_id})
assert len(workflow_jobs) == 2
assert len(second_invocation_jobs) == 1
[docs] @pytest.mark.require_new_history
def test_index_limit_and_offset_filter(self, history_id):
# create 2 datasets
self.__history_with_new_dataset(history_id)
self.__history_with_new_dataset(history_id)
jobs = self.__jobs_index(data={"history_id": history_id})
assert len(jobs) > 0
length = len(jobs)
jobs = self.__jobs_index(data={"history_id": history_id, "offset": 1})
assert len(jobs) == length - 1
jobs = self.__jobs_index(data={"history_id": history_id, "limit": 1})
assert len(jobs) == 1
response = self._get("jobs", data={"history_id": history_id, "limit": -1})
assert response.status_code == 400
assert response.json()["err_msg"] == "Input should be greater than or equal to 1 in ('query', 'limit')"
[docs] @pytest.mark.require_new_history
def test_index_search_filter_tool_id(self, history_id):
self.__history_with_new_dataset(history_id)
jobs = self.__jobs_index(data={"history_id": history_id})
assert len(jobs) > 0
length = len(jobs)
jobs = self.__jobs_index(data={"history_id": history_id, "search": "emptyresult"})
assert len(jobs) == 0
jobs = self.__jobs_index(data={"history_id": history_id, "search": "FETCH"})
assert len(jobs) == length
jobs = self.__jobs_index(data={"history_id": history_id, "search": "tool:'FETCH'"})
assert len(jobs) == 0
[docs] @pytest.mark.require_new_history
def test_index_search_filter_email(self, history_id):
self.__history_with_new_dataset(history_id)
jobs = self.__jobs_index(data={"history_id": history_id, "search": "FETCH"})
user_email = self.dataset_populator.user_email()
jobs = self.__jobs_index(data={"history_id": history_id, "search": user_email})
assert len(jobs) == 0
# we can search on email...
jobs = self.__jobs_index(
data={"history_id": history_id, "search": user_email, "user_details": True}, admin=True
)
assert len(jobs) == 1
# but only if user details are joined in.
jobs = self.__jobs_index(
data={"history_id": history_id, "search": user_email, "user_details": False}, admin=True
)
assert len(jobs) == 0
[docs] def test_index_user_filter(self):
test_user_email = "user_for_jobs_index_test@bx.psu.edu"
user = self._setup_user(test_user_email)
with self._different_user(email=test_user_email):
# User should be able to jobs for their own ID.
jobs = self.__jobs_index(data={"user_id": user["id"]})
assert jobs == []
# Admin should be able to see jobs of another user.
jobs = self.__jobs_index(data={"user_id": user["id"]}, admin=True)
assert jobs == []
# Normal user should not be able to see jobs of another user.
jobs_response = self._get("jobs", data={"user_id": user["id"]})
self._assert_status_code_is(jobs_response, 403)
assert jobs_response.json() == {"err_msg": "Only admins can index the jobs of others", "err_code": 403006}
[docs] @pytest.mark.require_new_history
def test_index_handler_runner_filters(self, history_id):
self.__history_with_new_dataset(history_id)
jobs = self._get(f"jobs?view=admin_job_list&history_id={history_id}", admin=True).json()
job = jobs[0]
handler = job["handler"]
assert handler
runner = job["job_runner_name"]
assert runner
# Free text search includes handler and runner for admin list view.
jobs = self._get(f"jobs?view=admin_job_list&history_id={history_id}&search={handler}", admin=True).json()
assert jobs
jobs = self._get(
f"jobs?view=admin_job_list&history_id={history_id}&search={handler}suffixnotfound", admin=True
).json()
assert not jobs
jobs = self._get(f"jobs?view=admin_job_list&history_id={history_id}&search={runner}", admin=True).json()
assert jobs
jobs = self._get(
f"jobs?view=admin_job_list&history_id={history_id}&search={runner}suffixnotfound", admin=True
).json()
assert not jobs
# Test tags for runner and handler specifically.
assert runner != handler
jobs = self._get(
f"jobs?view=admin_job_list&history_id={history_id}&search=handler:%27{handler}%27", admin=True
).json()
assert jobs
jobs = self._get(
f"jobs?view=admin_job_list&history_id={history_id}&search=runner:%27{handler}%27", admin=True
).json()
assert not jobs
jobs = self._get(
f"jobs?view=admin_job_list&history_id={history_id}&search=runner:%27{runner}%27", admin=True
).json()
assert jobs
jobs = self._get(
f"jobs?view=admin_job_list&history_id={history_id}&search=handler:%27{runner}%27", admin=True
).json()
assert not jobs
[docs] @pytest.mark.require_new_history
def test_index_multiple_states_filter(self, history_id):
# Initial number of ok jobs
original_count = len(self.__uploads_with_state("ok", "new"))
# Run through dataset upload to ensure num uploads at least greater
# by 1.
self.__history_with_ok_dataset(history_id)
# Verify number of ok jobs is actually greater.
new_count = len(self.__uploads_with_state("new", "ok"))
assert original_count < new_count, new_count
[docs] @pytest.mark.require_new_history
def test_show(self, history_id):
job_properties_tool_run = self.dataset_populator.run_tool(
tool_id="job_properties",
inputs={},
history_id=history_id,
)
first_job = self.__jobs_index()[0]
self._assert_has_key(first_job, "id", "state", "exit_code", "update_time", "create_time")
job_id = job_properties_tool_run["jobs"][0]["id"]
show_jobs_response = self.dataset_populator.get_job_details(job_id)
self._assert_status_code_is(show_jobs_response, 200)
job_details = show_jobs_response.json()
self._assert_has_key(job_details, "id", "state", "exit_code", "update_time", "create_time")
show_jobs_response = self.dataset_populator.get_job_details(job_id, full=True)
self._assert_status_code_is(show_jobs_response, 200)
job_details = show_jobs_response.json()
self._assert_has_key(
job_details,
"create_time",
"exit_code",
"id",
"job_messages",
"job_stderr",
"job_stdout",
"state",
"stderr",
"stdout",
"tool_stderr",
"tool_stdout",
"update_time",
)
self.dataset_populator.wait_for_job(job_id, assert_ok=True)
show_jobs_response = self.dataset_populator.get_job_details(job_id, full=True)
job_details = show_jobs_response.json()
assert "The bool is not true\n" not in job_details["job_stdout"]
assert "The bool is very not true\n" not in job_details["job_stderr"]
assert job_details["tool_stdout"] == "The bool is not true\n"
assert job_details["tool_stderr"] == "The bool is very not true\n"
assert "The bool is not true\n" in job_details["stdout"]
assert "The bool is very not true\n" in job_details["stderr"]
[docs] @pytest.mark.require_new_history
def test_show_security(self, history_id):
self.__history_with_new_dataset(history_id)
jobs_response = self._get("jobs", data={"history_id": history_id})
job = jobs_response.json()[0]
job_id = job["id"]
job_lock_response = self._get("job_lock", admin=True)
job_lock_response.raise_for_status()
assert not job_lock_response.json()["active"]
show_jobs_response = self._get(f"jobs/{job_id}", admin=False)
assert show_jobs_response.json()["external_id"] is None
# TODO: Re-activate test case when API accepts privacy settings
# with self._different_user():
# show_jobs_response = self._get( "jobs/%s" % job_id, admin=False )
# self._assert_status_code_is( show_jobs_response, 200 )
show_jobs_response = self._get(f"jobs/{job_id}", admin=True)
assert show_jobs_response.json()["external_id"] is not None
assert show_jobs_response.json()["command_line"] is not None
def _run_detect_errors(self, history_id, inputs):
payload = self.dataset_populator.run_tool_payload(
tool_id="detect_errors_aggressive",
inputs=inputs,
history_id=history_id,
)
return self._post("tools", data=payload).json()
[docs] @skip_without_tool("detect_errors_aggressive")
def test_unhide_on_error(self):
with self.dataset_populator.test_history() as history_id:
inputs = {"error_bool": "true"}
run_response = self._run_detect_errors(history_id=history_id, inputs=inputs)
job_id = run_response["jobs"][0]["id"]
self.dataset_populator.wait_for_job(job_id)
job = self.dataset_populator.get_job_details(job_id).json()
assert job["state"] == "error"
dataset = self.dataset_populator.get_history_dataset_details(
history_id=history_id, dataset_id=run_response["outputs"][0]["id"], assert_ok=False
)
assert dataset["visible"]
def _run_map_over_error(self, history_id):
fetch_response = self.dataset_collection_populator.create_list_in_history(
history_id, contents=[("sample1-1", "1 2 3")]
).json()
hdca1 = self.dataset_collection_populator.wait_for_fetched_collection(fetch_response)
inputs = {
"error_bool": "true",
"dataset": {
"batch": True,
"values": [{"src": "hdca", "id": hdca1["id"]}],
},
}
return self._run_detect_errors(history_id=history_id, inputs=inputs)
[docs] @skip_without_tool("detect_errors_aggressive")
def test_no_unhide_on_error_if_mapped_over(self):
with self.dataset_populator.test_history() as history_id:
run_response = self._run_map_over_error(history_id)
job_id = run_response["jobs"][0]["id"]
self.dataset_populator.wait_for_job(job_id)
job = self.dataset_populator.get_job_details(job_id).json()
assert job["state"] == "error"
dataset = self.dataset_populator.get_history_dataset_details(
history_id=history_id, dataset_id=run_response["outputs"][0]["id"], assert_ok=False
)
assert not dataset["visible"]
[docs] def test_no_hide_on_rerun(self):
with self.dataset_populator.test_history() as history_id:
run_response = self._run_map_over_error(history_id)
job_id = run_response["jobs"][0]["id"]
self.dataset_populator.wait_for_job(job_id)
failed_hdca = self.dataset_populator.get_history_collection_details(
history_id=history_id,
content_id=run_response["implicit_collections"][0]["id"],
assert_ok=False,
)
first_update_time = failed_hdca["update_time"]
assert failed_hdca["visible"]
rerun_params = self._get(f"jobs/{job_id}/build_for_rerun").json()
inputs = rerun_params["state_inputs"]
inputs["rerun_remap_job_id"] = job_id
rerun_response = self._run_detect_errors(history_id=history_id, inputs=inputs)
rerun_job_id = rerun_response["jobs"][0]["id"]
self.dataset_populator.wait_for_job(rerun_job_id)
# Verify source hdca is still visible
hdca = self.dataset_populator.get_history_collection_details(
history_id=history_id,
content_id=run_response["implicit_collections"][0]["id"],
assert_ok=False,
)
assert hdca["visible"]
assert isoparse(hdca["update_time"]) > (isoparse(first_update_time))
[docs] def test_rerun_exception_handling(self):
with self.dataset_populator.test_history() as history_id:
other_run_response = self.dataset_populator.run_tool(
tool_id="job_properties",
inputs={},
history_id=history_id,
)
unrelated_job_id = other_run_response["jobs"][0]["id"]
run_response = self._run_map_over_error(history_id)
job_id = run_response["jobs"][0]["id"]
self.dataset_populator.wait_for_job(job_id)
failed_hdca = self.dataset_populator.get_history_collection_details(
history_id=history_id,
content_id=run_response["implicit_collections"][0]["id"],
assert_ok=False,
)
assert failed_hdca["visible"]
rerun_params = self._get(f"jobs/{job_id}/build_for_rerun").json()
inputs = rerun_params["state_inputs"]
inputs["rerun_remap_job_id"] = unrelated_job_id
before_rerun_items = self.dataset_populator.get_history_contents(history_id)
rerun_response = self._run_detect_errors(history_id=history_id, inputs=inputs)
assert "does not match rerun tool id" in rerun_response["err_msg"]
after_rerun_items = self.dataset_populator.get_history_contents(history_id)
assert len(before_rerun_items) == len(after_rerun_items)
[docs] @skip_without_tool("empty_output")
def test_common_problems(self):
with self.dataset_populator.test_history() as history_id:
empty_run_response = self.dataset_populator.run_tool(
tool_id="empty_output",
inputs={},
history_id=history_id,
)
empty_hda = empty_run_response["outputs"][0]
cat_empty_twice_run_response = self.dataset_populator.run_tool(
tool_id="cat1",
inputs={
"input1": {"src": "hda", "id": empty_hda["id"]},
"queries_0|input2": {"src": "hda", "id": empty_hda["id"]},
},
history_id=history_id,
)
empty_output_job = empty_run_response["jobs"][0]
cat_empty_job = cat_empty_twice_run_response["jobs"][0]
empty_output_common_problems_response = self._get(f"jobs/{empty_output_job['id']}/common_problems").json()
cat_empty_common_problems_response = self._get(f"jobs/{cat_empty_job['id']}/common_problems").json()
self._assert_has_keys(empty_output_common_problems_response, "has_empty_inputs", "has_duplicate_inputs")
self._assert_has_keys(cat_empty_common_problems_response, "has_empty_inputs", "has_duplicate_inputs")
assert not empty_output_common_problems_response["has_empty_inputs"]
assert cat_empty_common_problems_response["has_empty_inputs"]
assert not empty_output_common_problems_response["has_duplicate_inputs"]
assert cat_empty_common_problems_response["has_duplicate_inputs"]
[docs] @skip_without_tool("detect_errors_aggressive")
def test_report_error(self):
with self.dataset_populator.test_history() as history_id:
self._run_error_report(history_id)
[docs] @skip_without_tool("detect_errors_aggressive")
def test_report_error_anon(self):
with self._different_user(anon=True):
history_id = self._get(urllib.parse.urljoin(self.url, "history/current_history_json")).json()["id"]
self._run_error_report(history_id)
def _run_error_report(self, history_id):
payload = self.dataset_populator.run_tool_payload(
tool_id="detect_errors_aggressive",
inputs={"error_bool": "true"},
history_id=history_id,
)
run_response = self._post("tools", data=payload).json()
job_id = run_response["jobs"][0]["id"]
self.dataset_populator.wait_for_job(job_id)
dataset_id = run_response["outputs"][0]["id"]
response = self._post(f"jobs/{job_id}/error", data={"dataset_id": dataset_id}, json=True)
assert response.status_code == 200, response.text
[docs] @skip_without_tool("detect_errors_aggressive")
def test_report_error_bootstrap_admin(self):
with self.dataset_populator.test_history() as history_id:
payload = self.dataset_populator.run_tool_payload(
tool_id="detect_errors_aggressive",
inputs={"error_bool": "true"},
history_id=history_id,
)
run_response = self._post("tools", data=payload, key=self.master_api_key)
self._assert_status_code_is(run_response, 400)
[docs] @pytest.mark.require_new_history
@skip_without_tool("create_2")
def test_deleting_output_keep_running_until_all_deleted(self, history_id):
job_state, outputs = self._setup_running_two_output_job(history_id, 120)
self._hack_to_skip_test_if_state_ok(job_state)
# Delete one of the two outputs and make sure the job is still running.
self._raw_update_history_item(history_id, outputs[0]["id"], {"deleted": True})
self._hack_to_skip_test_if_state_ok(job_state)
time.sleep(1)
self._hack_to_skip_test_if_state_ok(job_state)
state = job_state().json()["state"]
assert state == "running", state
# Delete the second output and make sure the job is cancelled.
self._raw_update_history_item(history_id, outputs[1]["id"], {"deleted": True})
final_state = wait_on_state(job_state, assert_ok=False, timeout=15)
assert final_state in ["deleting", "deleted"], final_state
[docs] @pytest.mark.require_new_history
@skip_without_tool("create_2")
def test_purging_output_keep_running_until_all_purged(self, history_id):
job_state, outputs = self._setup_running_two_output_job(history_id, 120)
# Pretty much right away after the job is running, these paths should be populated -
# if they are grab them and make sure they are deleted at the end of the job.
dataset_1 = self._get_history_item_as_admin(history_id, outputs[0]["id"])
dataset_2 = self._get_history_item_as_admin(history_id, outputs[1]["id"])
if "file_name" in dataset_1:
output_dataset_paths = [dataset_1["file_name"], dataset_2["file_name"]]
# This may or may not exist depending on if the test is local or not.
output_dataset_paths_exist = os.path.exists(output_dataset_paths[0])
else:
output_dataset_paths = []
output_dataset_paths_exist = False
self._hack_to_skip_test_if_state_ok(job_state)
current_state = job_state().json()["state"]
assert current_state == "running", current_state
# Purge one of the two outputs and make sure the job is still running.
self._raw_update_history_item(history_id, outputs[0]["id"], {"purged": True})
time.sleep(1)
self._hack_to_skip_test_if_state_ok(job_state)
current_state = job_state().json()["state"]
assert current_state == "running", current_state
# Purge the second output and make sure the job is cancelled.
self._raw_update_history_item(history_id, outputs[1]["id"], {"purged": True})
final_state = wait_on_state(job_state, assert_ok=False, timeout=15)
assert final_state in ["deleting", "deleted"], final_state
def paths_deleted():
if not os.path.exists(output_dataset_paths[0]) and not os.path.exists(output_dataset_paths[1]):
return True
if output_dataset_paths_exist:
wait_on(paths_deleted, "path deletion")
[docs] def test_submission_on_collection_with_deleted_element(self, history_id):
hdca = self.dataset_collection_populator.create_list_of_list_in_history(history_id=history_id, wait=True).json()
hda_id = hdca["elements"][0]["object"]["elements"][0]["object"]["id"]
self.dataset_populator.delete_dataset(history_id=history_id, content_id=hda_id)
response = self.dataset_populator.run_tool_raw(
"is_of_type",
inputs={
"collection": {"batch": True, "values": [{"src": "hdca", "id": hdca["id"], "map_over_type": "list"}]},
},
history_id=history_id,
)
assert response.status_code == 400
assert (
response.json()["err_msg"]
== "Parameter 'collection': the previously selected dataset collection has elements that are deleted."
)
[docs] @pytest.mark.require_new_history
@skip_without_tool("create_2")
def test_purging_output_cleaned_after_ok_run(self, history_id):
job_state, outputs = self._setup_running_two_output_job(history_id, 10)
# Pretty much right away after the job is running, these paths should be populated -
# if they are grab them and make sure they are deleted at the end of the job.
dataset_1 = self._get_history_item_as_admin(history_id, outputs[0]["id"])
dataset_2 = self._get_history_item_as_admin(history_id, outputs[1]["id"])
if "file_name" in dataset_1:
output_dataset_paths = [dataset_1["file_name"], dataset_2["file_name"]]
# This may or may not exist depending on if the test is local or not.
output_dataset_paths_exist = os.path.exists(output_dataset_paths[0])
else:
output_dataset_paths = []
output_dataset_paths_exist = False
if not output_dataset_paths_exist:
# Given this Galaxy configuration - there is nothing more to be tested here.
# Consider throwing a skip instead.
return
# Purge one of the two outputs and wait for the job to complete.
self._raw_update_history_item(history_id, outputs[0]["id"], {"purged": True})
wait_on_state(job_state, assert_ok=True)
if output_dataset_paths_exist:
time.sleep(0.5)
# Make sure the non-purged dataset is on disk and the purged one is not.
assert os.path.exists(output_dataset_paths[1])
assert not os.path.exists(output_dataset_paths[0])
def _hack_to_skip_test_if_state_ok(self, job_state):
if job_state().json()["state"] == "ok":
message = "Job state switch from running to ok too quickly - the rest of the test requires the job to be in a running state. Skipping test."
raise SkipTest(message)
def _setup_running_two_output_job(self, history_id, sleep_time):
payload = self.dataset_populator.run_tool_payload(
tool_id="create_2",
inputs=dict(
sleep_time=sleep_time,
),
history_id=history_id,
)
run_response = self._post("tools", data=payload)
run_response.raise_for_status()
run_object = run_response.json()
outputs = run_object["outputs"]
jobs = run_object["jobs"]
assert len(outputs) == 2
assert len(jobs) == 1
def job_state():
jobs_response = self._get(f"jobs/{jobs[0]['id']}")
return jobs_response
# Give job some time to get up and running.
time.sleep(2)
running_state = wait_on_state(job_state, skip_states=["queued", "new"], assert_ok=False, timeout=15)
assert running_state == "running", running_state
return job_state, outputs
def _raw_update_history_item(self, history_id, item_id, data):
update_url = self._api_url(f"histories/{history_id}/contents/{item_id}", use_key=True)
update_response = requests.put(update_url, json=data)
assert_status_code_is_ok(update_response)
return update_response
[docs] @pytest.mark.require_new_history
@skip_without_tool("cat_data_and_sleep")
def test_resume_job(self, history_id):
hda1 = self.dataset_populator.new_dataset(history_id, content="samp1\t10.0\nsamp2\t20.0\n")
hda2 = self.dataset_populator.new_dataset(history_id, content="samp1\t30.0\nsamp2\t40.0\n")
# Submit first job
payload = self.dataset_populator.run_tool_payload(
tool_id="cat_data_and_sleep",
inputs={
"sleep_time": 15,
"input1": {"src": "hda", "id": hda2["id"]},
"queries_0|input2": {"src": "hda", "id": hda2["id"]},
},
history_id=history_id,
)
run_response = self._post("tools", data=payload).json()
output = run_response["outputs"][0]
# Submit second job that waits on job1
payload = self.dataset_populator.run_tool_payload(
tool_id="cat1",
inputs={"input1": {"src": "hda", "id": hda1["id"]}, "queries_0|input2": {"src": "hda", "id": output["id"]}},
history_id=history_id,
)
run_response = self._post("tools", data=payload).json()
job_id = run_response["jobs"][0]["id"]
output = run_response["outputs"][0]
# Delete second jobs input while second job is waiting for first job
delete_response = self._delete(f"histories/{history_id}/contents/{hda1['id']}")
self._assert_status_code_is(delete_response, 200)
self.dataset_populator.wait_for_history_jobs(history_id, assert_ok=False)
dataset_details = self._get(f"histories/{history_id}/contents/{output['id']}").json()
assert dataset_details["state"] == "paused"
# Undelete input dataset
undelete_response = self._put(
f"histories/{history_id}/contents/{hda1['id']}", data={"deleted": False}, json=True
)
self._assert_status_code_is(undelete_response, 200)
resume_response = self._put(f"jobs/{job_id}/resume")
self._assert_status_code_is(resume_response, 200)
self.dataset_populator.wait_for_history_jobs(history_id, assert_ok=True)
dataset_details = self._get(f"histories/{history_id}/contents/{output['id']}").json()
assert dataset_details["state"] == "ok"
def _get_history_item_as_admin(self, history_id, item_id):
response = self._get(f"histories/{history_id}/contents/{item_id}?view=detailed", admin=True)
assert_status_code_is_ok(response)
return response.json()
[docs] @pytest.mark.require_new_history
def test_search(self, history_id):
dataset_id = self.__history_with_ok_dataset(history_id)
# We first copy the datasets, so that the update time is lower than the job creation time
new_history_id = self.dataset_populator.new_history()
copy_payload = {"content": dataset_id, "source": "hda", "type": "dataset"}
copy_response = self._post(f"histories/{new_history_id}/contents", data=copy_payload, json=True)
self._assert_status_code_is(copy_response, 200)
inputs = json.dumps({"input1": {"src": "hda", "id": dataset_id}})
self._job_search(tool_id="cat1", history_id=history_id, inputs=inputs)
# We test that a job can be found even if the dataset has been copied to another history
new_dataset_id = copy_response.json()["id"]
copied_inputs = json.dumps({"input1": {"src": "hda", "id": new_dataset_id}})
search_payload = self._search_payload(history_id=history_id, tool_id="cat1", inputs=copied_inputs)
self._search(search_payload, expected_search_count=1)
# Now we delete the original input HDA that was used -- we should still be able to find the job
delete_respone = self._delete(f"histories/{history_id}/contents/{dataset_id}")
self._assert_status_code_is(delete_respone, 200)
self._search(search_payload, expected_search_count=1)
# Now we also delete the copy -- we shouldn't find a job
delete_respone = self._delete(f"histories/{new_history_id}/contents/{new_dataset_id}")
self._assert_status_code_is(delete_respone, 200)
self._search(search_payload, expected_search_count=0)
[docs] @pytest.mark.require_new_history
def test_search_handle_identifiers(self, history_id):
# Test that input name and element identifier of a jobs' output must match for a job to be returned.
dataset_id = self.__history_with_ok_dataset(history_id)
inputs = json.dumps({"input1": {"src": "hda", "id": dataset_id}})
self._job_search(tool_id="identifier_single", history_id=history_id, inputs=inputs)
dataset_details = self._get(f"histories/{history_id}/contents/{dataset_id}").json()
dataset_details["name"] = "Renamed Test Dataset"
dataset_update_response = self._put(
f"histories/{history_id}/contents/{dataset_id}", data=dict(name="Renamed Test Dataset"), json=True
)
self._assert_status_code_is(dataset_update_response, 200)
assert dataset_update_response.json()["name"] == "Renamed Test Dataset"
search_payload = self._search_payload(history_id=history_id, tool_id="identifier_single", inputs=inputs)
self._search(search_payload, expected_search_count=0)
[docs] @pytest.mark.require_new_history
def test_search_delete_outputs(self, history_id):
dataset_id = self.__history_with_ok_dataset(history_id)
inputs = json.dumps({"input1": {"src": "hda", "id": dataset_id}})
tool_response = self._job_search(tool_id="cat1", history_id=history_id, inputs=inputs)
output_id = tool_response.json()["outputs"][0]["id"]
delete_respone = self._delete(f"histories/{history_id}/contents/{output_id}")
self._assert_status_code_is(delete_respone, 200)
search_payload = self._search_payload(history_id=history_id, tool_id="cat1", inputs=inputs)
self._search(search_payload, expected_search_count=0)
[docs] def test_implicit_collection_jobs(self, history_id):
run_response = self._run_map_over_error(history_id)
implicit_collection_id = run_response["implicit_collections"][0]["id"]
failed_hdca = self.dataset_populator.get_history_collection_details(
history_id=history_id,
content_id=implicit_collection_id,
assert_ok=False,
)
job_id = run_response["jobs"][0]["id"]
icj_id = failed_hdca["implicit_collection_jobs_id"]
assert icj_id
index = self.__jobs_index(data=dict(implicit_collection_jobs_id=icj_id))
assert len(index) == 1
assert index[0]["id"] == job_id
assert index[0]["state"] == "error", index
[docs] @pytest.mark.require_new_history
def test_search_with_hdca_list_input(self, history_id):
list_id_a = self.__history_with_ok_collection(collection_type="list", history_id=history_id)
list_id_b = self.__history_with_ok_collection(collection_type="list", history_id=history_id)
inputs = json.dumps(
{
"f1": {"src": "hdca", "id": list_id_a},
"f2": {"src": "hdca", "id": list_id_b},
}
)
tool_response = self._job_search(tool_id="multi_data_param", history_id=history_id, inputs=inputs)
# We switch the inputs, this should not return a match
inputs_switched = json.dumps(
{
"f2": {"src": "hdca", "id": list_id_a},
"f1": {"src": "hdca", "id": list_id_b},
}
)
search_payload = self._search_payload(history_id=history_id, tool_id="multi_data_param", inputs=inputs_switched)
self._search(search_payload, expected_search_count=0)
# We delete the ouput (this is a HDA, as multi_data_param reduces collections)
# and use the correct input job definition, the job should not be found
output_id = tool_response.json()["outputs"][0]["id"]
delete_respone = self._delete(f"histories/{history_id}/contents/{output_id}")
self._assert_status_code_is(delete_respone, 200)
search_payload = self._search_payload(history_id=history_id, tool_id="multi_data_param", inputs=inputs)
self._search(search_payload, expected_search_count=0)
[docs] @pytest.mark.require_new_history
def test_search_delete_hdca_output(self, history_id):
list_id_a = self.__history_with_ok_collection(collection_type="list", history_id=history_id)
inputs = json.dumps(
{
"input1": {"src": "hdca", "id": list_id_a},
}
)
tool_response = self._job_search(tool_id="collection_creates_list", history_id=history_id, inputs=inputs)
output_id = tool_response.json()["outputs"][0]["id"]
# We delete a single tool output, no job should be returned
delete_respone = self._delete(f"histories/{history_id}/contents/{output_id}")
self._assert_status_code_is(delete_respone, 200)
search_payload = self._search_payload(history_id=history_id, tool_id="collection_creates_list", inputs=inputs)
self._search(search_payload, expected_search_count=0)
tool_response = self._job_search(tool_id="collection_creates_list", history_id=history_id, inputs=inputs)
output_collection_id = tool_response.json()["output_collections"][0]["id"]
# We delete a collection output, no job should be returned
delete_respone = self._delete(f"histories/{history_id}/contents/dataset_collections/{output_collection_id}")
self._assert_status_code_is(delete_respone, 200)
search_payload = self._search_payload(history_id=history_id, tool_id="collection_creates_list", inputs=inputs)
self._search(search_payload, expected_search_count=0)
[docs] @pytest.mark.require_new_history
def test_search_with_hdca_pair_input(self, history_id):
list_id_a = self.__history_with_ok_collection(collection_type="pair", history_id=history_id)
inputs = json.dumps(
{
"f1": {"src": "hdca", "id": list_id_a},
"f2": {"src": "hdca", "id": list_id_a},
}
)
self._job_search(tool_id="multi_data_param", history_id=history_id, inputs=inputs)
# We test that a job can be found even if the collection has been copied to another history
new_history_id = self.dataset_populator.new_history()
copy_payload = {"content": list_id_a, "source": "hdca", "type": "dataset_collection"}
copy_response = self._post(f"histories/{new_history_id}/contents", data=copy_payload, json=True)
self._assert_status_code_is(copy_response, 200)
new_list_a = copy_response.json()["id"]
copied_inputs = json.dumps(
{
"f1": {"src": "hdca", "id": new_list_a},
"f2": {"src": "hdca", "id": new_list_a},
}
)
search_payload = self._search_payload(
history_id=new_history_id, tool_id="multi_data_param", inputs=copied_inputs
)
self._search(search_payload, expected_search_count=1)
# Now we delete the original input HDCA that was used -- we should still be able to find the job
delete_respone = self._delete(f"histories/{history_id}/contents/dataset_collections/{list_id_a}")
self._assert_status_code_is(delete_respone, 200)
self._search(search_payload, expected_search_count=1)
# Now we also delete the copy -- we shouldn't find a job
delete_respone = self._delete(f"histories/{history_id}/contents/dataset_collections/{new_list_a}")
self._assert_status_code_is(delete_respone, 200)
self._search(search_payload, expected_search_count=0)
[docs] @pytest.mark.require_new_history
def test_search_with_hdca_list_pair_input(self, history_id):
list_id_a = self.__history_with_ok_collection(collection_type="list:pair", history_id=history_id)
inputs = json.dumps(
{
"f1": {"src": "hdca", "id": list_id_a},
"f2": {"src": "hdca", "id": list_id_a},
}
)
self._job_search(tool_id="multi_data_param", history_id=history_id, inputs=inputs)
[docs] @pytest.mark.require_new_history
def test_search_with_hdca_list_pair_collection_mapped_over_pair_input(self, history_id):
list_id_a = self.__history_with_ok_collection(collection_type="list:pair", history_id=history_id)
inputs = json.dumps(
{
"f1": {"batch": True, "values": [{"src": "hdca", "id": list_id_a, "map_over_type": "paired"}]},
}
)
self._job_search(tool_id="collection_paired_test", history_id=history_id, inputs=inputs)
def _get_simple_rerun_params(self, history_id, private=False):
list_id_a = self.__history_with_ok_collection(collection_type="list:pair", history_id=history_id)
inputs = {"f1": {"batch": True, "values": [{"src": "hdca", "id": list_id_a, "map_over_type": "paired"}]}}
run_response = self._run(
history_id=history_id,
tool_id="collection_paired_test",
inputs=inputs,
wait_for_job=True,
assert_ok=True,
)
rerun_params = self._get(f"jobs/{run_response['jobs'][0]['id']}/build_for_rerun").json()
# Since we call rerun on the first (and only) job we should get the expanded input
# which is a dataset collection element (and not the list:pair hdca that was used as input to the original
# job).
assert rerun_params["state_inputs"]["f1"]["values"][0]["src"] == "dce"
if private:
hdca = self.dataset_populator.get_history_collection_details(history_id=history_id, content_id=list_id_a)
for element in hdca["elements"][0]["object"]["elements"]:
self.dataset_populator.make_private(history_id, element["object"]["id"])
return rerun_params
[docs] @skip_without_tool("collection_paired_test")
def test_job_build_for_rerun(self, history_id):
rerun_params = self._get_simple_rerun_params(history_id)
self._run(
history_id=history_id,
tool_id="collection_paired_test",
inputs=rerun_params["state_inputs"],
wait_for_job=True,
assert_ok=True,
)
[docs] @skip_without_tool("collection_paired_test")
def test_dce_submission_security(self, history_id):
rerun_params = self._get_simple_rerun_params(history_id, private=True)
with self._different_user():
other_history_id = self.dataset_populator.new_history()
response = self._run(
history_id=other_history_id,
tool_id="collection_paired_test",
inputs=rerun_params["state_inputs"],
wait_for_job=False,
assert_ok=False,
)
assert response.status_code == 403
[docs] @skip_without_tool("identifier_collection")
def test_job_build_for_rerun_list_list(self, history_id):
list_id_a = self.__history_with_ok_collection(collection_type="list", history_id=history_id)
list_id_b = self.__history_with_ok_collection(collection_type="list", history_id=history_id)
list_list = self.dataset_collection_populator.create_nested_collection(
history_id=history_id,
collection_type="list:list",
name="list list collection",
collection=[list_id_a, list_id_b],
).json()
list_list_id = list_list["id"]
first_element = list_list["elements"][0]
assert first_element["element_type"] == "dataset_collection"
assert first_element["element_identifier"] == "test0"
assert first_element["model_class"] == "DatasetCollectionElement"
inputs = {"input1": {"batch": True, "values": [{"src": "hdca", "id": list_list_id, "map_over_type": "list"}]}}
run_response = self._run(
history_id=history_id,
tool_id="identifier_collection",
inputs=inputs,
wait_for_job=True,
assert_ok=True,
)
assert len(run_response["jobs"]) == 2
rerun_params = self._get(f"jobs/{run_response['jobs'][0]['id']}/build_for_rerun").json()
# Since we call rerun on the first (and only) job we should get the expanded input
# which is a dataset collection element (and not the list:list hdca that was used as input to the original
# job).
assert rerun_params["state_inputs"]["input1"]["values"][0]["src"] == "dce"
rerun_response = self._run(
history_id=history_id,
tool_id="identifier_collection",
inputs=rerun_params["state_inputs"],
wait_for_job=True,
assert_ok=True,
)
assert len(rerun_response["jobs"]) == 1
rerun_content = self.dataset_populator.get_history_dataset_content(
history_id=history_id, dataset=rerun_response["outputs"][0]
)
run_content = self.dataset_populator.get_history_dataset_content(
history_id=history_id, dataset=run_response["outputs"][0]
)
assert rerun_content == run_content
[docs] @pytest.mark.require_new_history
def test_get_inputs_and_outputs(self, history_id):
dataset_id = self.__history_with_ok_dataset(history_id)
inputs = json.dumps({"input1": {"src": "hda", "id": dataset_id}})
search_response = self._create_and_search_job(history_id, inputs, tool_id="cat1")
job_id = search_response.json()[0]["id"]
job_first_output_name, job_first_output_values = list(search_response.json()[0]["outputs"].items())[0]
# get the inputs of the job
job_response = self._get(f"jobs/{job_id}/inputs")
self._assert_status_code_is(job_response, 200)
job_first_input = job_response.json()[0]
# validate input response
assert job_first_input.get("name") == "input1"
assert job_first_input.get("dataset") == {"src": "hda", "id": dataset_id}
# get the outputs of the job
job_response = self._get(f"jobs/{job_id}/outputs")
self._assert_status_code_is(job_response, 200)
job_first_output = job_response.json()[0]
# validate output response
assert job_first_output.get("name") == job_first_output_name
assert job_first_output.get("dataset").get("id") == job_first_output_values.get("id")
assert job_first_output.get("dataset").get("src") == job_first_output_values.get("src")
[docs] @pytest.mark.require_new_history
def test_delete_job(self, history_id):
dataset_id = self.__history_with_ok_dataset(history_id)
inputs = json.dumps({"input1": {"src": "hda", "id": dataset_id}})
search_payload = self._search_payload(history_id=history_id, tool_id="cat1", inputs=inputs)
# create a job
tool_response = self._post("tools", data=search_payload)
job_id = tool_response.json()["jobs"][0]["id"]
# delete the job without message
delete_job_response = self._delete(f"jobs/{job_id}")
self._assert_status_code_is(delete_job_response, 200)
assert delete_job_response.json() is True
# now that we deleted the job we should not find it anymore
search_payload = self._search_payload(history_id=history_id, tool_id="cat1", inputs=inputs)
empty_search_response = self._post("jobs/search", data=search_payload, json=True)
self._assert_status_code_is(empty_search_response, 200)
assert len(empty_search_response.json()) == 0
[docs] @pytest.mark.require_new_history
def test_destination_params(self, history_id):
dataset_id = self.__history_with_ok_dataset(history_id)
inputs = json.dumps({"input1": {"src": "hda", "id": dataset_id}})
search_response = self._create_and_search_job(history_id, inputs, tool_id="cat1")
job_id = search_response.json()[0]["id"]
destination_params_response = self._get(f"/api/jobs/{job_id}/destination_params", admin=True)
self._assert_status_code_is(destination_params_response, 200)
[docs] @pytest.mark.require_new_history
def test_job_metrics(self, history_id):
dataset_id = self.__history_with_ok_dataset(history_id)
inputs = json.dumps({"input1": {"src": "hda", "id": dataset_id}})
search_response = self._create_and_search_job(history_id, inputs, tool_id="cat1")
job_id = search_response.json()[0]["id"]
metrics_by_job_response = self._get(f"/api/jobs/{job_id}/metrics", data={"hda_ldda": "hda"})
self._assert_status_code_is(metrics_by_job_response, 200)
metrics_by_dataset_response = self._get(f"/api/datasets/{dataset_id}/metrics", data={"hda_ldda": "hda"})
self._assert_status_code_is(metrics_by_dataset_response, 200)
[docs] @pytest.mark.require_new_history
def test_parameters_display(self, history_id):
dataset_id = self.__history_with_ok_dataset(history_id)
inputs = json.dumps({"input1": {"src": "hda", "id": dataset_id}})
search_response = self._create_and_search_job(history_id, inputs, tool_id="cat1")
job_id = search_response.json()[0]["id"]
display_parameters_by_job_response = self._get(
f"/api/jobs/{job_id}/parameters_display", data={"hda_ldda": "hda"}
)
self._assert_status_code_is(display_parameters_by_job_response, 200)
display_parameters_by_dataset_response = self._get(
f"/api/datasets/{dataset_id}/parameters_display", data={"hda_ldda": "hda"}
)
self._assert_status_code_is(display_parameters_by_dataset_response, 200)
def _create_and_search_job(self, history_id, inputs, tool_id):
# create a job
search_payload = self._search_payload(history_id=history_id, tool_id=tool_id, inputs=inputs)
tool_response = self._post("tools", data=search_payload)
self.dataset_populator.wait_for_tool_run(history_id, run_response=tool_response)
# search for the job and get the corresponding values
search_response = self._post("jobs/search", data=search_payload, json=True)
self._assert_status_code_is(search_response, 200)
return search_response
def _job_search(self, tool_id, history_id, inputs):
search_payload = self._search_payload(history_id=history_id, tool_id=tool_id, inputs=inputs)
empty_search_response = self._post("jobs/search", data=search_payload, json=True)
self._assert_status_code_is(empty_search_response, 200)
assert len(empty_search_response.json()) == 0
tool_response = self._post("tools", data=search_payload)
self.dataset_populator.wait_for_tool_run(history_id, run_response=tool_response)
self._search(search_payload, expected_search_count=1)
return tool_response
def _search_payload(self, history_id, tool_id, inputs, state="ok"):
search_payload = dict(tool_id=tool_id, inputs=inputs, history_id=history_id, state=state)
return search_payload
def _search(self, payload, expected_search_count=1):
# in case job and history aren't updated at exactly the same
# time give time to wait
for _ in range(5):
search_count = self._search_count(payload)
if search_count == expected_search_count:
break
time.sleep(1)
assert (
search_count == expected_search_count
), f"expected to find {expected_search_count} jobs, got {search_count} jobs"
return search_count
def _search_count(self, search_payload):
search_response = self._post("jobs/search", data=search_payload, json=True)
self._assert_status_code_is(search_response, 200)
search_json = search_response.json()
return len(search_json)
def __uploads_with_state(self, *states):
jobs_response = self._get("jobs", data=dict(state=states))
self._assert_status_code_is(jobs_response, 200)
jobs = jobs_response.json()
assert not [j for j in jobs if j["state"] not in states]
return [j for j in jobs if j["tool_id"] == "__DATA_FETCH__"]
def __history_with_new_dataset(self, history_id):
dataset_id = self.dataset_populator.new_dataset(history_id, wait=True)["id"]
return dataset_id
def __history_with_ok_dataset(self, history_id):
dataset_id = self.dataset_populator.new_dataset(history_id, wait=True)["id"]
return dataset_id
def __history_with_ok_collection(self, collection_type="list", history_id=None):
if not history_id:
history_id = self.dataset_populator.new_history()
if collection_type == "list":
fetch_response = self.dataset_collection_populator.create_list_in_history(
history_id, direct_upload=True
).json()
elif collection_type == "pair":
fetch_response = self.dataset_collection_populator.create_pair_in_history(
history_id, direct_upload=True
).json()
elif collection_type == "list:pair":
fetch_response = self.dataset_collection_populator.create_list_of_pairs_in_history(history_id).json()
self.dataset_collection_populator.wait_for_fetched_collection(fetch_response)
return fetch_response["outputs"][0]["id"]
def __jobs_index(self, **kwds):
jobs_response = self._get("jobs", **kwds)
self._assert_status_code_is(jobs_response, 200)
jobs = jobs_response.json()
assert isinstance(jobs, list)
return jobs