Warning
This document is for an in-development version of Galaxy. You can alternatively view this page in the latest release if it exists or view the top of the latest release's documentation.
Source code for galaxy.visualization.data_providers.basic
from json import loads
from galaxy.datatypes.tabular import Tabular
from galaxy.model import DatasetInstance
[docs]class BaseDataProvider:
"""
Base class for data providers. Data providers both:
- read and package data from datasets
- write subsets of data to new datasets
"""
original_dataset: DatasetInstance
[docs] def __init__(
self,
converted_dataset=None,
original_dataset=None,
dependencies=None,
error_max_vals="Only the first %i values are returned.",
):
"""Create basic data provider."""
self.converted_dataset = converted_dataset
self.original_dataset = original_dataset
self.dependencies = dependencies
self.error_max_vals = error_max_vals
[docs]class ColumnDataProvider(BaseDataProvider):
"""Data provider for columnar data"""
MAX_LINES_RETURNED = 30000
[docs] def __init__(self, original_dataset, max_lines_returned=MAX_LINES_RETURNED):
# Compatibility check.
if not isinstance(original_dataset.datatype, Tabular):
raise Exception("Data provider can only be used with tabular data")
# Attribute init.
self.original_dataset = original_dataset
# allow throttling
self.max_lines_returned = max_lines_returned
[docs] def get_data(self, columns=None, start_val=0, max_vals=None, skip_comments=True, **kwargs):
"""
Returns data from specified columns in dataset. Format is list of lists
where each list is a line of data.
"""
if not columns:
raise TypeError("parameter required: columns")
# TODO: validate kwargs
try:
max_vals = int(max_vals)
max_vals = min([max_vals, self.max_lines_returned])
except (ValueError, TypeError):
max_vals = self.max_lines_returned
try:
start_val = int(start_val)
start_val = max([start_val, 0])
except (ValueError, TypeError):
start_val = 0
# skip comment lines (if any/avail)
# pre: should have original_dataset and
if (
skip_comments
and self.original_dataset.metadata.comment_lines
and start_val < self.original_dataset.metadata.comment_lines
):
start_val = int(self.original_dataset.metadata.comment_lines)
# columns is an array of ints for now (should handle column names later)
columns = loads(columns)
for column in columns:
assert column < self.original_dataset.metadata.columns and column >= 0, (
f"column index ({column}) must be positive and less"
f" than the number of columns: {self.original_dataset.metadata.columns}"
)
# set up the response, column lists
response = {}
response["data"] = data = [[] for column in columns]
response["meta"] = meta = [{"min": None, "max": None, "count": 0, "sum": 0} for column in columns]
column_types = [self.original_dataset.metadata.column_types[column] for column in columns]
# function for casting by column_types
def cast_val(val, type):
"""Cast value based on type. Return None if can't be cast"""
if type == "int":
try:
val = int(val)
except ValueError:
return None
elif type == "float":
try:
val = float(val)
except ValueError:
return None
return val
returning_data = False
f = open(self.original_dataset.get_file_name())
# TODO: add f.seek if given fptr in kwargs
for count, line in enumerate(f):
# check line v. desired start, end
if count < start_val:
continue
if (count - start_val) >= max_vals:
break
returning_data = True
fields = line.split()
fields_len = len(fields)
# NOTE: this will return None/null for abberrant column values (including bad indeces)
for index, column in enumerate(columns):
column_val = None
column_type = column_types[index]
if column < fields_len:
column_val = cast_val(fields[column], column_type)
if column_val is not None:
# if numeric, maintain min, max, sum
if column_type == "float" or column_type == "int":
if (meta[index]["min"] is None) or (column_val < meta[index]["min"]):
meta[index]["min"] = column_val
if (meta[index]["max"] is None) or (column_val > meta[index]["max"]):
meta[index]["max"] = column_val
meta[index]["sum"] += column_val
# maintain a count - for other stats
meta[index]["count"] += 1
data[index].append(column_val)
response["endpoint"] = dict(last_line=(count - 1), file_ptr=f.tell())
f.close()
if not returning_data:
return None
for index, meta in enumerate(response["meta"]):
column_type = column_types[index]
count = meta["count"]
if (column_type == "float" or column_type == "int") and count:
meta["mean"] = float(meta["sum"]) / count
sorted_data = sorted(response["data"][index])
middle_index = (count / 2) - 1
if count % 2 == 0:
meta["median"] = (sorted_data[middle_index] + sorted_data[(middle_index + 1)]) / 2.0
else:
meta["median"] = sorted_data[middle_index]
# ugh ... metadata_data_lines is not a reliable source; hafta have an EOF
return response