Warning
This document is for an in-development version of Galaxy. You can alternatively view this page in the latest release if it exists or view the top of the latest release's documentation.
Source code for galaxy.tools.parameters.wrapped_json
import json
import logging
from typing import (
Any,
Dict,
List,
Sequence,
TYPE_CHECKING,
)
from packaging.version import Version
if TYPE_CHECKING:
from galaxy.tools.parameters.wrappers import (
DatasetCollectionWrapper,
DatasetFilenameWrapper,
)
log = logging.getLogger(__name__)
SKIP_INPUT = object()
[docs]def json_wrap(inputs, input_values, profile, as_dict=None, handle_files="skip"):
if as_dict is None:
as_dict = {}
for input in inputs.values():
input_name = input.name
value_wrapper = input_values[input_name]
json_value = _json_wrap_input(input, value_wrapper, profile, handle_files=handle_files)
if json_value is SKIP_INPUT:
continue
as_dict[input_name] = json_value
return as_dict
def data_input_to_path(v):
path = _cast_if_not_none(v, str)
if path == "None":
path = None
return path
def data_collection_input_to_path(v):
return v.all_paths
def data_collection_input_to_staging_path_and_source_path(
v: "DatasetCollectionWrapper", invalid_chars: Sequence[str] = ("/",), include_collection_name: bool = False
) -> List[Dict[str, Any]]:
staging_paths = v.get_all_staging_paths(
invalid_chars=invalid_chars, include_collection_name=include_collection_name
)
if v.element_identifiers_extensions_paths_and_metadata_files:
element_identifiers, extensions, source_paths, metadata_files = zip(
*v.element_identifiers_extensions_paths_and_metadata_files
)
else:
element_identifiers, extensions, source_paths, metadata_files = (), (), (), ()
return [
{
"element_identifier": element_identifier,
"ext": extension,
"staging_path": staging_path,
"source_path": source_path,
"metadata_files": [
{"staging_path": f"{staging_path}.{mf[0]}", "source_path": mf[1]} for mf in metadata_files
],
}
for element_identifier, extension, staging_path, source_path, metadata_files in zip(
element_identifiers, extensions, staging_paths, source_paths, metadata_files
)
]
def data_input_to_staging_path_and_source_path(
v: "DatasetFilenameWrapper", invalid_chars: Sequence[str] = ("/",)
) -> Dict[str, Any]:
staging_path = v.get_staging_path(invalid_chars=invalid_chars)
# note that the element identifier should be always a list
return {
"element_identifier": [v.element_identifier],
"ext": v.file_ext,
"staging_path": staging_path,
"source_path": data_input_to_path(v),
"metadata_files": [
{"staging_path": f"{staging_path}.{mf[0]}", "source_path": mf[1]} for mf in v.all_metadata_files
],
}
def _json_wrap_input(input, value_wrapper, profile, handle_files="skip"):
input_type = input.type
if input_type == "repeat":
repeat_job_value = []
for d in value_wrapper:
repeat_instance_job_value = {}
json_wrap(input.inputs, d, profile, repeat_instance_job_value, handle_files=handle_files)
repeat_job_value.append(repeat_instance_job_value)
json_value = repeat_job_value
elif input_type == "conditional":
values = value_wrapper
current = values["__current_case__"]
conditional_job_value = {}
json_wrap(input.cases[current].inputs, values, profile, conditional_job_value, handle_files=handle_files)
test_param = input.test_param
test_param_name = test_param.name
test_value = _json_wrap_input(test_param, values[test_param_name], profile, handle_files=handle_files)
conditional_job_value[test_param_name] = test_value
json_value = conditional_job_value
elif input_type == "section":
values = value_wrapper
section_job_value = {}
json_wrap(input.inputs, values, profile, section_job_value, handle_files=handle_files)
json_value = section_job_value
elif input_type == "data" and input.multiple:
if handle_files == "paths":
json_value = [data_input_to_path(v) for v in value_wrapper]
elif handle_files == "staging_path_and_source_path":
json_value = [data_input_to_staging_path_and_source_path(v) for v in value_wrapper]
elif handle_files == "skip":
return SKIP_INPUT
else:
raise NotImplementedError()
elif input_type == "data":
if handle_files == "paths":
json_value = data_input_to_path(value_wrapper)
elif handle_files == "staging_path_and_source_path":
json_value = data_input_to_staging_path_and_source_path(value_wrapper)
elif handle_files == "skip":
return SKIP_INPUT
elif handle_files == "OBJECT":
if value_wrapper:
if isinstance(value_wrapper, list):
value_wrapper = value_wrapper[0]
json_value = _hda_to_object(value_wrapper)
if input.load_contents:
with open(str(value_wrapper), mode="rb") as fh:
json_value["contents"] = fh.read(input.load_contents).decode("utf-8", errors="replace")
return json_value
else:
return None
else:
raise NotImplementedError()
elif input_type == "data_collection":
if handle_files == "skip":
return SKIP_INPUT
elif handle_files == "paths":
return data_collection_input_to_path(value_wrapper)
elif handle_files == "staging_path_and_source_path":
return data_collection_input_to_staging_path_and_source_path(value_wrapper)
raise NotImplementedError()
elif input_type in ["text", "color", "hidden"]:
if getattr(input, "optional", False) and value_wrapper is not None and value_wrapper.value is None:
json_value = None
else:
json_value = _cast_if_not_none(value_wrapper, str)
elif input_type == "float":
json_value = _cast_if_not_none(value_wrapper, float, empty_to_none=True)
elif input_type == "integer":
json_value = _cast_if_not_none(value_wrapper, int, empty_to_none=True)
elif input_type == "boolean":
if input.optional and value_wrapper is not None and value_wrapper.value is None:
json_value = None
else:
json_value = _cast_if_not_none(value_wrapper, bool, empty_to_none=input.optional)
elif input_type == "select":
if Version(str(profile)) < Version("20.05"):
json_value = _cast_if_not_none(value_wrapper, str)
else:
if input.multiple:
json_value = [str(_) for _ in _cast_if_not_none(value_wrapper.value, list)]
else:
json_value = _cast_if_not_none(value_wrapper.value, str)
elif input_type == "data_column":
# value is a SelectToolParameterWrapper()
if input.multiple:
json_value = [int(_) for _ in _cast_if_not_none(value_wrapper.value, list)]
else:
json_value = [_cast_if_not_none(value_wrapper.value, int)]
elif input_type == "directory_uri":
json_value = _cast_if_not_none(value_wrapper, str)
else:
raise NotImplementedError(f"input_type [{input_type}] not implemented")
return json_value
def _hda_to_object(hda):
if hda.extension == "expression.json":
# We may have a null data value
with open(str(hda)) as inp:
try:
rval = json.loads(inp.read(5))
if rval is None:
return rval
except Exception:
pass
hda_dict = hda.to_dict()
metadata_dict = {}
for key, value in hda_dict.items():
if key.startswith("metadata_"):
metadata_dict[key[len("metadata_") :]] = value
return {
"file_ext": hda_dict["file_ext"],
"file_size": hda_dict["file_size"],
"name": hda_dict["name"],
"metadata": metadata_dict,
"src": {"src": "hda", "id": hda.id},
}
def _cast_if_not_none(value, cast_to, empty_to_none=False):
# log.debug("value [%s], type[%s]" % (value, type(value)))
if value is None or (empty_to_none and str(value) == ""):
return None
else:
return cast_to(value)
__all__ = ("json_wrap",)