Warning

This document is for an in-development version of Galaxy. You can alternatively view this page in the latest release if it exists or view the top of the latest release's documentation.

Source code for galaxy.datatypes.converters.interval_to_fli

"""
Creates a feature location index (FLI) for a given BED/GFF file.
FLI index has the form::

    [line_length]
    <symbol1_in_lowercase><tab><symbol1><tab><location>
    <symbol2_in_lowercase><tab><symbol2><tab><location>
    ...

where location is formatted as:

    contig:start-end

and symbols are sorted in lexigraphical order.
"""

import optparse

from bx.tabular.io import (
    Comment,
    Header,
)

from galaxy.datatypes.util.gff_util import (
    convert_gff_coords_to_bed,
    GFFReaderWrapper,
    read_unordered_gtf,
)


[docs]def main(): # Process arguments. parser = optparse.OptionParser() parser.add_option("-F", "--format", dest="input_format") (options, args) = parser.parse_args() in_fname, out_fname = args input_format = options.input_format.lower() # Create dict of name-location pairings. name_loc_dict = {} if input_format in ["gff", "gtf"]: # GTF/GFF format # Create reader. if input_format == "gff": in_reader = GFFReaderWrapper(open(in_fname)) else: # input_format == 'gtf' in_reader = read_unordered_gtf(open(in_fname)) for feature in in_reader: if isinstance(feature, (Header, Comment)): continue for name in feature.attributes: val = feature.attributes[name] try: float(val) continue except ValueError: convert_gff_coords_to_bed(feature) # Value is not a number, so it can be indexed. if val not in name_loc_dict: # Value is not in dictionary. name_loc_dict[val] = {"contig": feature.chrom, "start": feature.start, "end": feature.end} else: # Value already in dictionary, so update dictionary. loc = name_loc_dict[val] if feature.start < loc["start"]: loc["start"] = feature.start if feature.end > loc["end"]: loc["end"] = feature.end elif input_format == "bed": # BED format. for line in open(in_fname): # Ignore track lines. if line.startswith("track"): continue fields = line.split() # Ignore lines with no feature name. if len(fields) < 4: continue # Process line name_loc_dict[fields[3]] = {"contig": fields[0], "start": int(fields[1]), "end": int(fields[2])} # Create sorted list of entries. max_len = 0 entries = [] for name in sorted(name_loc_dict.keys()): loc = name_loc_dict[name] entry = "{}\t{}\t{}".format(name.lower(), name, "%s:%i-%i" % (loc["contig"], loc["start"], loc["end"])) if len(entry) > max_len: max_len = len(entry) entries.append(entry) # Write padded entries. with open(out_fname, "w") as out: out.write(f"{str(max_len + 1).ljust(max_len)}\n") for entry in entries: out.write(f"{entry.ljust(max_len)}\n")
if __name__ == "__main__": main()