Warning

This document is for an in-development version of Galaxy. You can alternatively view this page in the latest release if it exists or view the top of the latest release's documentation.

Source code for galaxy.datatypes.converters.interval_to_fli

'''
Creates a feature location index (FLI) for a given BED/GFF file.
FLI index has the form::

    [line_length]
    <symbol1_in_lowercase><tab><symbol1><tab><location>
    <symbol2_in_lowercase><tab><symbol2><tab><location>
    ...

where location is formatted as:

    contig:start-end

and symbols are sorted in lexigraphical order.
'''
import optparse

from bx.tabular.io import Comment, Header

from galaxy.datatypes.util.gff_util import convert_gff_coords_to_bed, GFFReaderWrapper, read_unordered_gtf


[docs]def main(): # Process arguments. parser = optparse.OptionParser() parser.add_option('-F', '--format', dest="input_format") (options, args) = parser.parse_args() in_fname, out_fname = args input_format = options.input_format.lower() # Create dict of name-location pairings. name_loc_dict = {} if input_format in ['gff', 'gtf']: # GTF/GFF format # Create reader. if input_format == 'gff': in_reader = GFFReaderWrapper(open(in_fname, 'r')) else: # input_format == 'gtf' in_reader = read_unordered_gtf(open(in_fname, 'r')) for feature in in_reader: if isinstance(feature, (Header, Comment)): continue for name in feature.attributes: val = feature.attributes[name] try: float(val) continue except ValueError: convert_gff_coords_to_bed(feature) # Value is not a number, so it can be indexed. if val not in name_loc_dict: # Value is not in dictionary. name_loc_dict[val] = { 'contig': feature.chrom, 'start': feature.start, 'end': feature.end } else: # Value already in dictionary, so update dictionary. loc = name_loc_dict[val] if feature.start < loc['start']: loc['start'] = feature.start if feature.end > loc['end']: loc['end'] = feature.end elif input_format == 'bed': # BED format. for line in open(in_fname, 'r'): # Ignore track lines. if line.startswith("track"): continue fields = line.split() # Ignore lines with no feature name. if len(fields) < 4: continue # Process line name_loc_dict[fields[3]] = { 'contig': fields[0], 'start': int(fields[1]), 'end': int(fields[2]) } # Create sorted list of entries. max_len = 0 entries = [] for name in sorted(name_loc_dict.keys()): loc = name_loc_dict[name] entry = '%s\t%s\t%s' % (name.lower(), name, '%s:%i-%i' % (loc['contig'], loc['start'], loc['end'])) if len(entry) > max_len: max_len = len(entry) entries.append(entry) # Write padded entries. with open(out_fname, 'w') as out: out.write(str(max_len + 1).ljust(max_len) + '\n') for entry in entries: out.write(entry.ljust(max_len) + '\n')
if __name__ == '__main__': main()