Warning

This document is for an old release of Galaxy. You can alternatively view this page in the latest release if it exists or view the top of the latest release's documentation.

Source code for galaxy.tool_util.parser.output_collection_def

""" This module define an abstract class for reasoning about Galaxy's
dataset collection after jobs are finished.
"""

from typing import List

from galaxy.util import asbool
from .util import is_dict

DEFAULT_EXTRA_FILENAME_PATTERN = (
    r"primary_DATASET_ID_(?P<designation>[^_]+)_(?P<visible>[^_]+)_(?P<ext>[^_]+)(_(?P<dbkey>[^_]+))?"
)
DEFAULT_SORT_BY = "filename"
DEFAULT_SORT_COMP = "lexical"


# XML can describe custom patterns, but these literals describe named
# patterns that will be replaced.
NAMED_PATTERNS = {
    "__default__": DEFAULT_EXTRA_FILENAME_PATTERN,
    "__name__": r"(?P<name>.*)",
    "__designation__": r"(?P<designation>.*)",
    "__name_and_ext__": r"(?P<name>.*)\.(?P<ext>[^\.]+)?",
    "__designation_and_ext__": r"(?P<designation>.*)\.(?P<ext>[^\._]+)?",
}

INPUT_DBKEY_TOKEN = "__input__"
LEGACY_DEFAULT_DBKEY = None  # don't use __input__ for legacy default collection


[docs]def dataset_collector_descriptions_from_elem(elem, legacy=True): primary_dataset_elems = elem.findall("discover_datasets") num_discover_dataset_blocks = len(primary_dataset_elems) if num_discover_dataset_blocks == 0 and legacy: collectors = [DEFAULT_DATASET_COLLECTOR_DESCRIPTION] else: default_format = elem.attrib.get("format") collectors = [] for e in primary_dataset_elems: description_attributes = e.attrib if default_format and "format" not in description_attributes and "ext" not in description_attributes: description_attributes["format"] = default_format collectors.append(dataset_collection_description(**description_attributes)) return _validate_collectors(collectors)
[docs]def dataset_collector_descriptions_from_output_dict(as_dict): discover_datasets_dicts = as_dict.get("discover_datasets", []) if is_dict(discover_datasets_dicts): discover_datasets_dicts = [discover_datasets_dicts] dataset_collector_descriptions = dataset_collector_descriptions_from_list(discover_datasets_dicts) return _validate_collectors(dataset_collector_descriptions)
def _validate_collectors(collectors): num_discover_dataset_blocks = len(collectors) if num_discover_dataset_blocks > 1: for collector in collectors: if collector.discover_via == "tool_provided_metadata": raise Exception( "Cannot specify more than one discover dataset condition if any of them specify tool_provided_metadata." ) return collectors
[docs]def dataset_collector_descriptions_from_list(discover_datasets_dicts): return list(map(lambda kwds: dataset_collection_description(**kwds), discover_datasets_dicts))
[docs]def dataset_collection_description(**kwargs): from_provided_metadata = asbool(kwargs.get("from_provided_metadata", False)) discover_via = kwargs.get("discover_via", "tool_provided_metadata" if from_provided_metadata else "pattern") if discover_via == "tool_provided_metadata": for key in ["pattern", "sort_by"]: if kwargs.get(key): raise Exception(f"Cannot specify attribute [{key}] if from_provided_metadata is True") return ToolProvidedMetadataDatasetCollection(**kwargs) else: return FilePatternDatasetCollectionDescription(**kwargs)
[docs]class DatasetCollectionDescription:
[docs] def __init__(self, **kwargs): self.default_dbkey = kwargs.get("dbkey", INPUT_DBKEY_TOKEN) self.default_ext = kwargs.get("ext", None) if self.default_ext is None and "format" in kwargs: self.default_ext = kwargs.get("format") self.default_visible = asbool(kwargs.get("visible", None)) self.assign_primary_output = asbool(kwargs.get("assign_primary_output", False)) self.directory = kwargs.get("directory", None) self.recurse = False self.match_relative_path = kwargs.get("match_relative_path", False)
[docs] def to_dict(self): return { "discover_via": self.discover_via, "dbkey": self.default_dbkey, "format": self.default_ext, "visible": self.default_visible, "assign_primary_output": self.assign_primary_output, "directory": self.directory, "recurse": self.recurse, "match_relative_path": self.match_relative_path, }
@property def discover_patterns(self) -> List[str]: return []
[docs]class ToolProvidedMetadataDatasetCollection(DatasetCollectionDescription): discover_via = "tool_provided_metadata"
[docs]class FilePatternDatasetCollectionDescription(DatasetCollectionDescription): discover_via = "pattern"
[docs] def __init__(self, **kwargs): super().__init__(**kwargs) pattern = kwargs.get("pattern", "__default__") self.recurse = asbool(kwargs.get("recurse", False)) self.match_relative_path = asbool(kwargs.get("match_relative_path", False)) if pattern in NAMED_PATTERNS: pattern = NAMED_PATTERNS[pattern] self.pattern = pattern self.sort_by = sort_by = kwargs.get("sort_by", DEFAULT_SORT_BY) if sort_by.startswith("reverse_"): self.sort_reverse = True sort_by = sort_by[len("reverse_") :] else: self.sort_reverse = False if "_" in sort_by: sort_comp, sort_by = sort_by.split("_", 1) assert sort_comp in ["lexical", "numeric"] else: sort_comp = DEFAULT_SORT_COMP assert sort_by in ["filename", "name", "designation", "dbkey"] self.sort_key = sort_by self.sort_comp = sort_comp
[docs] def to_dict(self): as_dict = super().to_dict() as_dict.update( { "sort_key": self.sort_key, "sort_comp": self.sort_comp, "pattern": self.pattern, "recurse": self.recurse, "sort_by": self.sort_by, } ) return as_dict
@property def discover_patterns(self) -> List[str]: return [self.pattern]
DEFAULT_DATASET_COLLECTOR_DESCRIPTION = FilePatternDatasetCollectionDescription( default_dbkey=LEGACY_DEFAULT_DBKEY, )