Warning

This document is for an old release of Galaxy. You can alternatively view this page in the latest release if it exists or view the top of the latest release's documentation.

Source code for galaxy.model.unittest_utils.store_fixtures

"""Fixtures for populating model stores."""

from typing import (
    Any,
    Dict,
)
from uuid import uuid4

from galaxy.model.orm.now import now

TEST_SOURCE_URI = "https://raw.githubusercontent.com/galaxyproject/galaxy/dev/test-data/2.bed"
TEST_SOURCE_URI_BAM = "https://raw.githubusercontent.com/galaxyproject/galaxy/dev/test-data/1.bam"
TEST_HASH_FUNCTION = "MD5"
TEST_HASH_VALUE = "moocowpretendthisisahas"
TEST_HISTORY_NAME = "My history in a model store"
TEST_EXTENSION = "bed"
TEST_LIBRARY_NAME = "My cool library"
TEST_LIBRARY_DESCRIPTION = "My cool library - a description"
TEST_LIBRARY_SYNOPSIS = "My cool library - a synopsis"
TEST_ROOT_FOLDER_NAME = "The root folder"
TEST_ROOT_FOLDER_DESCRIPTION = "The root folder description"
TEST_LDDA_ID = "id_ldda1"
TEST_LIBRARY_ID = "id_library1"
TEST_LIBRARY_DATASET_NAME = "my cool library dataset"
TEST_LIBRARY_DATASET_INFO = "important info about the library dataset"

BED_2_METADATA = {
    "dbkey": "?",
    "data_lines": 68,
    "comment_lines": 0,
    "columns": 6,
}


[docs]def one_ld_library_model_store_dict(): dataset_hash = dict( model_class="DatasetHash", hash_function=TEST_HASH_FUNCTION, hash_value=TEST_HASH_VALUE, extra_files_path=None, ) dataset_source: Dict[str, Any] = dict( model_class="DatasetSource", source_uri=TEST_SOURCE_URI, extra_files_path=None, transform=None, hashes=[], ) metadata = BED_2_METADATA file_metadata = dict( hashes=[dataset_hash], sources=[dataset_source], created_from_basename="dataset.txt", ) serialized_ldda = dict( encoded_id=TEST_LDDA_ID, model_class="LibraryDatasetDatasetAssociation", create_time=now().__str__(), update_time=now().__str__(), name="my cool name", info="my cool info", blurb="a blurb goes here...", peek="A bit of the data...", extension=TEST_EXTENSION, metadata=metadata, designation=None, deleted=False, visible=True, dataset_uuid=str(uuid4()), annotation="my cool annotation", file_metadata=file_metadata, ) ld = { "name": TEST_LIBRARY_DATASET_NAME, "info": TEST_LIBRARY_DATASET_INFO, "order_id": 0, "ldda": { "model_class": "LibraryDatasetDatasetAssocation", "encoded_id": TEST_LDDA_ID, }, } root_folder: Dict[str, Any] = { "model_class": "LibraryFolder", "name": TEST_ROOT_FOLDER_NAME, "description": TEST_ROOT_FOLDER_DESCRIPTION, "genome_build": None, "deleted": False, "folders": [], "datasets": [ld], } serialized_library = { "model_class": "Library", "encoded_id": TEST_LIBRARY_ID, "name": TEST_LIBRARY_NAME, "description": TEST_LIBRARY_DESCRIPTION, "synopsis": TEST_LIBRARY_SYNOPSIS, "root_folder": root_folder, } return { "libraries": [ serialized_library, ], "datasets": [ serialized_ldda, ], }
[docs]def one_ld_library_deferred_model_store_dict(): dataset_hash = dict( model_class="DatasetHash", hash_function=TEST_HASH_FUNCTION, hash_value=TEST_HASH_VALUE, extra_files_path=None, ) dataset_source: Dict[str, Any] = dict( model_class="DatasetSource", source_uri=TEST_SOURCE_URI, extra_files_path=None, transform=None, hashes=[], ) metadata = BED_2_METADATA file_metadata = dict( hashes=[dataset_hash], sources=[dataset_source], created_from_basename="dataset.txt", ) serialized_ldda = dict( encoded_id=TEST_LDDA_ID, model_class="LibraryDatasetDatasetAssociation", create_time=now().__str__(), update_time=now().__str__(), name="my cool name", info="my cool info", blurb="a blurb goes here...", peek="A bit of the data...", extension=TEST_EXTENSION, metadata=metadata, designation=None, deleted=False, visible=True, dataset_uuid=str(uuid4()), annotation="my cool annotation", file_metadata=file_metadata, state="deferred", ) ld = { "name": TEST_LIBRARY_DATASET_NAME, "info": TEST_LIBRARY_DATASET_INFO, "order_id": 0, "ldda": { "model_class": "LibraryDatasetDatasetAssocation", "encoded_id": TEST_LDDA_ID, }, } root_folder: Dict[str, Any] = { "model_class": "LibraryFolder", "name": TEST_ROOT_FOLDER_NAME, "description": TEST_ROOT_FOLDER_DESCRIPTION, "genome_build": None, "deleted": False, "folders": [], "datasets": [ld], } serialized_library = { "model_class": "Library", "encoded_id": TEST_LIBRARY_ID, "name": TEST_LIBRARY_NAME, "description": TEST_LIBRARY_DESCRIPTION, "synopsis": TEST_LIBRARY_SYNOPSIS, "root_folder": root_folder, } return { "libraries": [ serialized_library, ], "datasets": [ serialized_ldda, ], }
[docs]def one_hda_model_store_dict( include_source=True, ): dataset_hash = dict( model_class="DatasetHash", hash_function=TEST_HASH_FUNCTION, hash_value=TEST_HASH_VALUE, extra_files_path=None, ) dataset_source: Dict[str, Any] = dict( model_class="DatasetSource", source_uri=TEST_SOURCE_URI, extra_files_path=None, transform=None, hashes=[], ) metadata = BED_2_METADATA file_metadata = dict( hashes=[dataset_hash], sources=[dataset_source] if include_source else [], created_from_basename="dataset.txt", ) serialized_hda = dict( encoded_id="id_hda1", model_class="HistoryDatasetAssociation", create_time=now().__str__(), update_time=now().__str__(), name="my cool name", info="my cool info", blurb="a blurb goes here...", peek="A bit of the data...", extension=TEST_EXTENSION, metadata=metadata, designation=None, deleted=False, visible=True, dataset_uuid=str(uuid4()), annotation="my cool annotation", file_metadata=file_metadata, ) return { "datasets": [ serialized_hda, ] }
[docs]def history_model_store_dict(): dataset_hash = dict( model_class="DatasetHash", hash_function=TEST_HASH_FUNCTION, hash_value=TEST_HASH_VALUE, extra_files_path=None, ) dataset_source: Dict[str, Any] = dict( model_class="DatasetSource", source_uri=TEST_SOURCE_URI, extra_files_path=None, transform=None, hashes=[], ) metadata = BED_2_METADATA file_metadata = dict( hashes=[dataset_hash], sources=[dataset_source], created_from_basename="dataset.txt", ) serialized_hda = dict( encoded_id="id_hda1", model_class="HistoryDatasetAssociation", create_time=now().__str__(), update_time=now().__str__(), name="my cool name", info="my cool info", blurb="a blurb goes here...", peek="A bit of the data...", extension=TEST_EXTENSION, metadata=metadata, designation=None, visible=True, dataset_uuid=str(uuid4()), annotation="my cool annotation", file_metadata=file_metadata, ) return { "datasets": [ serialized_hda, ], "history": { "name": TEST_HISTORY_NAME, }, }
[docs]def deferred_hda_model_store_dict( source_uri=TEST_SOURCE_URI, metadata_deferred=False, ): dataset_hash = dict( model_class="DatasetHash", hash_function=TEST_HASH_FUNCTION, hash_value=TEST_HASH_VALUE, extra_files_path=None, ) dataset_source: Dict[str, Any] = dict( model_class="DatasetSource", source_uri=source_uri, extra_files_path=None, transform=None, hashes=[], ) metadata = BED_2_METADATA file_metadata = dict( hashes=[dataset_hash], sources=[dataset_source], created_from_basename="dataset.txt", ) serialized_hda = dict( encoded_id="id_hda1", model_class="HistoryDatasetAssociation", create_time=now().__str__(), update_time=now().__str__(), name="my cool name", info="my cool info", blurb="a blurb goes here...", peek="A bit of the data...", extension=TEST_EXTENSION, designation=None, deleted=False, visible=True, dataset_uuid=str(uuid4()), annotation="my cool annotation", file_metadata=file_metadata, state="deferred", metadata_deferred=metadata_deferred, ) if not metadata_deferred: serialized_hda["metadata"] = metadata return { "datasets": [ serialized_hda, ] }
[docs]def deferred_hda_model_store_dict_bam( source_uri=TEST_SOURCE_URI_BAM, metadata_deferred=False, ): dataset_hash = dict( model_class="DatasetHash", hash_function=TEST_HASH_FUNCTION, hash_value=TEST_HASH_VALUE, extra_files_path=None, ) dataset_source: Dict[str, Any] = dict( model_class="DatasetSource", source_uri=source_uri, extra_files_path=None, transform=None, hashes=[], ) metadata = {"dbkey": "?"} file_metadata = dict( hashes=[dataset_hash], sources=[dataset_source], created_from_basename="dataset.txt", ) serialized_hda = dict( encoded_id="id_hda1", model_class="HistoryDatasetAssociation", create_time=now().__str__(), update_time=now().__str__(), name="my cool name", info="my cool info", blurb="a blurb goes here...", peek="A bit of the data...", extension="bam", designation=None, deleted=False, visible=True, dataset_uuid=str(uuid4()), annotation="my cool annotation", file_metadata=file_metadata, state="deferred", metadata_deferred=metadata_deferred, ) if not metadata_deferred: serialized_hda["metadata"] = metadata return { "datasets": [ serialized_hda, ] }