Warning

This document is for an in-development version of Galaxy. You can alternatively view this page in the latest release if it exists or view the top of the latest release's documentation.

Source code for galaxy.workflow.run_request

import json
import logging
import uuid

from galaxy import (
    exceptions,
    model
)
from galaxy.managers import histories
from galaxy.tools.parameters.meta import expand_workflow_inputs
from galaxy.workflow.resources import get_resource_mapper_function

INPUT_STEP_TYPES = ['data_input', 'data_collection_input', 'parameter_input']

log = logging.getLogger(__name__)


[docs]class WorkflowRunConfig(object): """ Wrapper around all the ways a workflow execution can be parameterized. :param target_history: History to execute workflow in. :type target_history: galaxy.model.History. :param replacement_dict: Workflow level parameters used for renaming post job actions. :type replacement_dict: dict :param copy_inputs_to_history: Should input data parameters be copied to target_history. (Defaults to False) :type copy_inputs_to_history: bool :param inputs: Map from step ids to dict's containing HDA for these steps. :type inputs: dict :param inputs_by: How inputs maps to inputs (datasets/collections) to workflows steps - by unencoded database id ('step_id'), index in workflow 'step_index' (independent of database), or by input name for that step ('name'). :type inputs_by: str :param param_map: Override step parameters - should be dict with step id keys and tool param name-value dicts as values. :type param_map: dict """
[docs] def __init__(self, target_history, replacement_dict, copy_inputs_to_history=False, inputs=None, param_map=None, allow_tool_state_corrections=False, use_cached_job=False, resource_params=None): self.target_history = target_history self.replacement_dict = replacement_dict self.copy_inputs_to_history = copy_inputs_to_history self.inputs = inputs or {} self.param_map = param_map or {} self.resource_params = resource_params or {} self.allow_tool_state_corrections = allow_tool_state_corrections self.use_cached_job = use_cached_job
def _normalize_inputs(steps, inputs, inputs_by): normalized_inputs = {} for step in steps: if step.type not in INPUT_STEP_TYPES: continue possible_input_keys = [] for inputs_by_el in inputs_by.split("|"): if inputs_by_el == "step_id": possible_input_keys.append(str(step.id)) elif inputs_by_el == "step_index": possible_input_keys.append(str(step.order_index)) elif inputs_by_el == "step_uuid": possible_input_keys.append(str(step.uuid)) elif inputs_by_el == "name": possible_input_keys.append(step.label or step.tool_inputs.get('name')) else: raise exceptions.MessageException("Workflow cannot be run because unexpected inputs_by value specified.") inputs_key = None for possible_input_key in possible_input_keys: if possible_input_key in inputs: inputs_key = possible_input_key default_value = step.tool_inputs.get("default") optional = step.tool_inputs.get("optional") or False # Need to be careful here to make sure 'default' has correct type - not sure how to do that # but asserting 'optional' is definitely a bool and not a String->Bool or something is a good # start to ensure tool state is being preserved and loaded in a type safe way. assert isinstance(optional, bool) if not inputs_key and default_value is None and not optional: message = "Workflow cannot be run because an expected input step '%s' (%s) is not optional and no input." % (step.id, step.label) raise exceptions.MessageException(message) if inputs_key: normalized_inputs[step.id] = inputs[inputs_key] return normalized_inputs def _normalize_step_parameters(steps, param_map, legacy=False, already_normalized=False): """ Take a complex param_map that can reference parameters by step_id in the new flexible way or in the old one-parameter per tep fashion or by tool id and normalize the parameters so everything is referenced by a numeric step id. """ normalized_param_map = {} for step in steps: if already_normalized: param_dict = param_map.get(str(step.order_index), {}) else: param_dict = _step_parameters(step, param_map, legacy=legacy) if step.type == "subworkflow" and param_dict: if not already_normalized: raise exceptions.RequestParameterInvalidException("Specifying subworkflow step parameters requires already_normalized to be specified as true.") subworkflow_param_dict = {} for key, value in param_dict.items(): step_index, param_name = key.split("|", 1) if step_index not in subworkflow_param_dict: subworkflow_param_dict[step_index] = {} subworkflow_param_dict[step_index][param_name] = value param_dict = _normalize_step_parameters(step.subworkflow.steps, subworkflow_param_dict, legacy=legacy, already_normalized=already_normalized) if param_dict: normalized_param_map[step.id] = param_dict return normalized_param_map def _step_parameters(step, param_map, legacy=False): """ Update ``step`` parameters based on the user-provided ``param_map`` dict. ``param_map`` should be structured as follows:: PARAM_MAP = {STEP_ID_OR_UUID: PARAM_DICT, ...} PARAM_DICT = {NAME: VALUE, ...} For backwards compatibility, the following (deprecated) format is also supported for ``param_map``:: PARAM_MAP = {TOOL_ID: PARAM_DICT, ...} in which case PARAM_DICT affects all steps with the given tool id. If both by-tool-id and by-step-id specifications are used, the latter takes precedence. Finally (again, for backwards compatibility), PARAM_DICT can also be specified as:: PARAM_DICT = {'param': NAME, 'value': VALUE} Note that this format allows only one parameter to be set per step. """ param_dict = param_map.get(step.tool_id, {}).copy() if legacy: param_dict.update(param_map.get(str(step.id), {})) else: param_dict.update(param_map.get(str(step.order_index), {})) step_uuid = step.uuid if step_uuid: uuid_params = param_map.get(str(step_uuid), {}) param_dict.update(uuid_params) if param_dict: if 'param' in param_dict and 'value' in param_dict: param_dict[param_dict['param']] = param_dict['value'] del param_dict['param'] del param_dict['value'] # Inputs can be nested dict, but Galaxy tool code wants nesting of keys (e.g. # cond1|moo=4 instead of cond1: {moo: 4} ). new_params = _flatten_step_params(param_dict) return new_params def _flatten_step_params(param_dict, prefix=""): # TODO: Temporary work around until tool code can process nested data # structures. This should really happen in there so the tools API gets # this functionality for free and so that repeats can be handled # properly. Also the tool code walks the tool inputs so it nows what is # a complex value object versus something that maps to child parameters # better than the hack or searching for src and id here. new_params = {} for key in list(param_dict.keys()): if prefix: effective_key = "%s|%s" % (prefix, key) else: effective_key = key value = param_dict[key] if isinstance(value, dict) and (not ('src' in value and 'id' in value) and key != "__POST_JOB_ACTIONS__"): new_params.update(_flatten_step_params(value, effective_key)) else: new_params[effective_key] = value return new_params def _get_target_history(trans, workflow, payload, param_keys=None, index=0): param_keys = param_keys or [] history_name = payload.get('new_history_name', None) history_id = payload.get('history_id', None) history_param = payload.get('history', None) if [history_name, history_id, history_param].count(None) < 2: raise exceptions.RequestParameterInvalidException("Specified workflow target history multiple ways - at most one of 'history', 'history_id', and 'new_history_name' may be specified.") if history_param: if history_param.startswith('hist_id='): history_id = history_param[8:] else: history_name = history_param if history_id: history_manager = histories.HistoryManager(trans.app) target_history = history_manager.get_owned(trans.security.decode_id(history_id), trans.user, current_history=trans.history) else: if history_name: nh_name = history_name else: nh_name = 'History from %s workflow' % workflow.name if len(param_keys) <= index: raise exceptions.MessageException("Incorrect expansion of workflow batch parameters.") ids = param_keys[index] nids = len(ids) if nids == 1: nh_name = '%s on %s' % (nh_name, ids[0]) elif nids > 1: nh_name = '%s on %s and %s' % (nh_name, ', '.join(ids[0:-1]), ids[-1]) new_history = trans.app.model.History(user=trans.user, name=nh_name) trans.sa_session.add(new_history) target_history = new_history return target_history
[docs]def build_workflow_run_configs(trans, workflow, payload): app = trans.app allow_tool_state_corrections = payload.get('allow_tool_state_corrections', False) use_cached_job = payload.get('use_cached_job', False) # Sanity checks. if len(workflow.steps) == 0: raise exceptions.MessageException("Workflow cannot be run because it does not have any steps") if workflow.has_cycles: raise exceptions.MessageException("Workflow cannot be run because it contains cycles") if 'step_parameters' in payload and 'parameters' in payload: raise exceptions.RequestParameterInvalidException("Cannot specify both legacy parameters and step_parameters attributes.") if 'inputs' in payload and 'ds_map' in payload: raise exceptions.RequestParameterInvalidException("Cannot specify both legacy ds_map and input attributes.") add_to_history = 'no_add_to_history' not in payload legacy = payload.get('legacy', False) already_normalized = payload.get('parameters_normalized', False) raw_parameters = payload.get('parameters', {}) run_configs = [] unexpanded_param_map = _normalize_step_parameters(workflow.steps, raw_parameters, legacy=legacy, already_normalized=already_normalized) expanded_params, expanded_param_keys = expand_workflow_inputs(unexpanded_param_map) for index, param_map in enumerate(expanded_params): history = _get_target_history(trans, workflow, payload, expanded_param_keys, index) inputs = payload.get('inputs', None) inputs_by = payload.get('inputs_by', None) # New default is to reference steps by index of workflow step # which is intrinsic to the workflow and independent of the state # of Galaxy at the time of workflow import. default_inputs_by = 'step_index|step_uuid' if inputs is None: # Default to legacy behavior - read ds_map and reference steps # by unencoded step id (a raw database id). inputs = payload.get('ds_map', {}) if legacy: default_inputs_by = 'step_id|step_uuid' inputs_by = inputs_by or default_inputs_by else: inputs = inputs or {} inputs_by = inputs_by or default_inputs_by if inputs or not already_normalized: normalized_inputs = _normalize_inputs(workflow.steps, inputs, inputs_by) else: # Only allow dumping IDs directly into JSON database instead of properly recording the # inputs with referential integrity if parameters are already normalized (coming from tool form). normalized_inputs = {} if param_map: # disentangle raw parameter dictionaries into formal request structures if we can # to setup proper WorkflowRequestToInputDatasetAssociation, WorkflowRequestToInputDatasetCollectionAssociation # and WorkflowRequestInputStepParameter objects. for step in workflow.steps: normalized_key = step.id if step.type == "parameter_input": if normalized_key in param_map: value = param_map.pop(normalized_key) normalized_inputs[normalized_key] = value["input"] steps_by_id = workflow.steps_by_id # Set workflow inputs. for key, input_dict in normalized_inputs.items(): step = steps_by_id[key] if step.type == 'parameter_input': continue if 'src' not in input_dict: raise exceptions.RequestParameterInvalidException("Not input source type defined for input '%s'." % input_dict) if 'id' not in input_dict: raise exceptions.RequestParameterInvalidException("Not input id defined for input '%s'." % input_dict) if 'content' in input_dict: raise exceptions.RequestParameterInvalidException("Input cannot specify explicit 'content' attribute %s'." % input_dict) input_source = input_dict['src'] input_id = input_dict['id'] try: if input_source == 'ldda': ldda = trans.sa_session.query(app.model.LibraryDatasetDatasetAssociation).get(trans.security.decode_id(input_id)) assert trans.user_is_admin or trans.app.security_agent.can_access_dataset(trans.get_current_user_roles(), ldda.dataset) content = ldda.to_history_dataset_association(history, add_to_history=add_to_history) elif input_source == 'ld': ldda = trans.sa_session.query(app.model.LibraryDataset).get(trans.security.decode_id(input_id)).library_dataset_dataset_association assert trans.user_is_admin or trans.app.security_agent.can_access_dataset(trans.get_current_user_roles(), ldda.dataset) content = ldda.to_history_dataset_association(history, add_to_history=add_to_history) elif input_source == 'hda': # Get dataset handle, add to dict and history if necessary content = trans.sa_session.query(app.model.HistoryDatasetAssociation).get(trans.security.decode_id(input_id)) assert trans.user_is_admin or trans.app.security_agent.can_access_dataset(trans.get_current_user_roles(), content.dataset) elif input_source == 'uuid': dataset = trans.sa_session.query(app.model.Dataset).filter(app.model.Dataset.uuid == input_id).first() if dataset is None: # this will need to be changed later. If federation code is avalible, then a missing UUID # could be found amoung fereration partners raise exceptions.RequestParameterInvalidException("Input cannot find UUID: %s." % input_id) assert trans.user_is_admin or trans.app.security_agent.can_access_dataset(trans.get_current_user_roles(), dataset) content = history.add_dataset(dataset) elif input_source == 'hdca': content = app.dataset_collections_service.get_dataset_collection_instance(trans, 'history', input_id) else: raise exceptions.RequestParameterInvalidException("Unknown workflow input source '%s' specified." % input_source) if add_to_history and content.history != history: content = content.copy() if isinstance(content, app.model.HistoryDatasetAssociation): history.add_dataset(content) else: history.add_dataset_collection(content) input_dict['content'] = content except AssertionError: raise exceptions.ItemAccessibilityException("Invalid workflow input '%s' specified" % input_id) for key in set(normalized_inputs.keys()): value = normalized_inputs[key] if isinstance(value, dict) and 'content' in value: normalized_inputs[key] = value['content'] else: normalized_inputs[key] = value resource_params = payload.get('resource_params', {}) if resource_params: # quick attempt to validate parameters, just handle select options now since is what # is needed for DTD - arbitrary plugins can define arbitrary logic at runtime in the # destination function. In the future this should be extended to allow arbitrary # pluggable validation. resource_mapper_function = get_resource_mapper_function(trans.app) # TODO: Do we need to do anything with the stored_workflow or can this be removed. resource_parameters = resource_mapper_function(trans=trans, stored_workflow=None, workflow=workflow) for resource_parameter in resource_parameters: if resource_parameter.get("type") == "select": name = resource_parameter.get("name") if name in resource_params: value = resource_params[name] valid_option = False # TODO: How should be handle the case where no selection is made by the user # This can happen when there is a select on the page but the user has no options to select # Here I have the validation pass it through. An alternative may be to remove the parameter if # it is None. if value is None: valid_option = True else: for option_elem in resource_parameter.get('data'): option_value = option_elem.get("value") if value == option_value: valid_option = True if not valid_option: raise exceptions.RequestParameterInvalidException("Invalid value for parameter '%s' found." % name) run_configs.append(WorkflowRunConfig( target_history=history, replacement_dict=payload.get('replacement_params', {}), inputs=normalized_inputs, param_map=param_map, allow_tool_state_corrections=allow_tool_state_corrections, use_cached_job=use_cached_job, resource_params=resource_params, )) return run_configs
[docs]def workflow_run_config_to_request(trans, run_config, workflow): param_types = model.WorkflowRequestInputParameter.types workflow_invocation = model.WorkflowInvocation() workflow_invocation.uuid = uuid.uuid1() workflow_invocation.history = run_config.target_history def add_parameter(name, value, type): parameter = model.WorkflowRequestInputParameter( name=name, value=value, type=type, ) workflow_invocation.input_parameters.append(parameter) steps_by_id = {} for step in workflow.steps: steps_by_id[step.id] = step serializable_runtime_state = step.module.encode_runtime_state(step.state) step_state = model.WorkflowRequestStepState() step_state.workflow_step = step log.info("Creating a step_state for step.id %s" % step.id) step_state.value = serializable_runtime_state workflow_invocation.step_states.append(step_state) if step.type == "subworkflow": subworkflow_run_config = WorkflowRunConfig( target_history=run_config.target_history, replacement_dict=run_config.replacement_dict, copy_inputs_to_history=False, use_cached_job=run_config.use_cached_job, inputs={}, param_map=run_config.param_map.get(step.order_index, {}), allow_tool_state_corrections=run_config.allow_tool_state_corrections, resource_params=run_config.resource_params ) subworkflow_invocation = workflow_run_config_to_request( trans, subworkflow_run_config, step.subworkflow, ) workflow_invocation.attach_subworkflow_invocation_for_step( step, subworkflow_invocation, ) replacement_dict = run_config.replacement_dict for name, value in replacement_dict.items(): add_parameter( name=name, value=value, type=param_types.REPLACEMENT_PARAMETERS, ) for step_id, content in run_config.inputs.items(): workflow_invocation.add_input(content, step_id) for step_id, param_dict in run_config.param_map.items(): add_parameter( name=step_id, value=json.dumps(param_dict), type=param_types.STEP_PARAMETERS, ) resource_parameters = run_config.resource_params for key, value in resource_parameters.items(): add_parameter(key, value, param_types.RESOURCE_PARAMETERS) add_parameter("copy_inputs_to_history", "true" if run_config.copy_inputs_to_history else "false", param_types.META_PARAMETERS) add_parameter("use_cached_job", "true" if run_config.use_cached_job else "false", param_types.META_PARAMETERS) return workflow_invocation
[docs]def workflow_request_to_run_config(work_request_context, workflow_invocation): param_types = model.WorkflowRequestInputParameter.types history = workflow_invocation.history replacement_dict = {} inputs = {} param_map = {} resource_params = {} copy_inputs_to_history = None use_cached_job = False for parameter in workflow_invocation.input_parameters: parameter_type = parameter.type if parameter_type == param_types.REPLACEMENT_PARAMETERS: replacement_dict[parameter.name] = parameter.value elif parameter_type == param_types.META_PARAMETERS: if parameter.name == "copy_inputs_to_history": copy_inputs_to_history = (parameter.value == "true") if parameter.name == 'use_cached_job': use_cached_job = (parameter.value == 'true') elif parameter_type == param_types.RESOURCE_PARAMETERS: resource_params[parameter.name] = parameter.value elif parameter_type == param_types.STEP_PARAMETERS: param_map[int(parameter.name)] = json.loads(parameter.value) for input_association in workflow_invocation.input_datasets: inputs[input_association.workflow_step_id] = input_association.dataset for input_association in workflow_invocation.input_dataset_collections: inputs[input_association.workflow_step_id] = input_association.dataset_collection for input_association in workflow_invocation.input_step_parameters: inputs[input_association.workflow_step_id] = input_association.parameter_value if copy_inputs_to_history is None: raise exceptions.InconsistentDatabase("Failed to find copy_inputs_to_history parameter loading workflow_invocation from database.") workflow_run_config = WorkflowRunConfig( target_history=history, replacement_dict=replacement_dict, inputs=inputs, param_map=param_map, copy_inputs_to_history=copy_inputs_to_history, use_cached_job=use_cached_job, resource_params=resource_params, ) return workflow_run_config
def __decode_id(trans, workflow_id, model_type="workflow"): try: return trans.security.decode_id(workflow_id) except Exception: message = "Malformed %s id ( %s ) specified, unable to decode" % (model_type, workflow_id) raise exceptions.MalformedId(message)