Warning
This document is for an in-development version of Galaxy. You can alternatively view this page in the latest release if it exists or view the top of the latest release's documentation.
Source code for galaxy.workflow.run_request
import json
import logging
import uuid
from galaxy import (
exceptions,
model
)
from galaxy.managers import histories
from galaxy.tools.parameters.meta import expand_workflow_inputs
from galaxy.workflow.resources import get_resource_mapper_function
INPUT_STEP_TYPES = ['data_input', 'data_collection_input', 'parameter_input']
log = logging.getLogger(__name__)
[docs]class WorkflowRunConfig(object):
""" Wrapper around all the ways a workflow execution can be parameterized.
:param target_history: History to execute workflow in.
:type target_history: galaxy.model.History.
:param replacement_dict: Workflow level parameters used for renaming post
job actions.
:type replacement_dict: dict
:param copy_inputs_to_history: Should input data parameters be copied to
target_history. (Defaults to False)
:type copy_inputs_to_history: bool
:param inputs: Map from step ids to dict's containing HDA for these steps.
:type inputs: dict
:param inputs_by: How inputs maps to inputs (datasets/collections) to workflows
steps - by unencoded database id ('step_id'), index in workflow
'step_index' (independent of database), or by input name for
that step ('name').
:type inputs_by: str
:param param_map: Override step parameters - should be dict with step id keys and
tool param name-value dicts as values.
:type param_map: dict
"""
[docs] def __init__(self, target_history,
replacement_dict,
copy_inputs_to_history=False,
inputs=None,
param_map=None,
allow_tool_state_corrections=False,
use_cached_job=False,
resource_params=None):
self.target_history = target_history
self.replacement_dict = replacement_dict
self.copy_inputs_to_history = copy_inputs_to_history
self.inputs = inputs or {}
self.param_map = param_map or {}
self.resource_params = resource_params or {}
self.allow_tool_state_corrections = allow_tool_state_corrections
self.use_cached_job = use_cached_job
def _normalize_inputs(steps, inputs, inputs_by):
normalized_inputs = {}
for step in steps:
if step.type not in INPUT_STEP_TYPES:
continue
possible_input_keys = []
for inputs_by_el in inputs_by.split("|"):
if inputs_by_el == "step_id":
possible_input_keys.append(str(step.id))
elif inputs_by_el == "step_index":
possible_input_keys.append(str(step.order_index))
elif inputs_by_el == "step_uuid":
possible_input_keys.append(str(step.uuid))
elif inputs_by_el == "name":
possible_input_keys.append(step.label or step.tool_inputs.get('name'))
else:
raise exceptions.MessageException("Workflow cannot be run because unexpected inputs_by value specified.")
inputs_key = None
for possible_input_key in possible_input_keys:
if possible_input_key in inputs:
inputs_key = possible_input_key
default_value = step.tool_inputs.get("default")
optional = step.tool_inputs.get("optional") or False
# Need to be careful here to make sure 'default' has correct type - not sure how to do that
# but asserting 'optional' is definitely a bool and not a String->Bool or something is a good
# start to ensure tool state is being preserved and loaded in a type safe way.
assert isinstance(optional, bool)
if not inputs_key and default_value is None and not optional:
message = "Workflow cannot be run because an expected input step '%s' (%s) is not optional and no input." % (step.id, step.label)
raise exceptions.MessageException(message)
if inputs_key:
normalized_inputs[step.id] = inputs[inputs_key]
return normalized_inputs
def _normalize_step_parameters(steps, param_map, legacy=False, already_normalized=False):
""" Take a complex param_map that can reference parameters by
step_id in the new flexible way or in the old one-parameter
per tep fashion or by tool id and normalize the parameters so
everything is referenced by a numeric step id.
"""
normalized_param_map = {}
for step in steps:
if already_normalized:
param_dict = param_map.get(str(step.order_index), {})
else:
param_dict = _step_parameters(step, param_map, legacy=legacy)
if step.type == "subworkflow" and param_dict:
if not already_normalized:
raise exceptions.RequestParameterInvalidException("Specifying subworkflow step parameters requires already_normalized to be specified as true.")
subworkflow_param_dict = {}
for key, value in param_dict.items():
step_index, param_name = key.split("|", 1)
if step_index not in subworkflow_param_dict:
subworkflow_param_dict[step_index] = {}
subworkflow_param_dict[step_index][param_name] = value
param_dict = _normalize_step_parameters(step.subworkflow.steps, subworkflow_param_dict, legacy=legacy, already_normalized=already_normalized)
if param_dict:
normalized_param_map[step.id] = param_dict
return normalized_param_map
def _step_parameters(step, param_map, legacy=False):
"""
Update ``step`` parameters based on the user-provided ``param_map`` dict.
``param_map`` should be structured as follows::
PARAM_MAP = {STEP_ID_OR_UUID: PARAM_DICT, ...}
PARAM_DICT = {NAME: VALUE, ...}
For backwards compatibility, the following (deprecated) format is
also supported for ``param_map``::
PARAM_MAP = {TOOL_ID: PARAM_DICT, ...}
in which case PARAM_DICT affects all steps with the given tool id.
If both by-tool-id and by-step-id specifications are used, the
latter takes precedence.
Finally (again, for backwards compatibility), PARAM_DICT can also
be specified as::
PARAM_DICT = {'param': NAME, 'value': VALUE}
Note that this format allows only one parameter to be set per step.
"""
param_dict = param_map.get(step.tool_id, {}).copy()
if legacy:
param_dict.update(param_map.get(str(step.id), {}))
else:
param_dict.update(param_map.get(str(step.order_index), {}))
step_uuid = step.uuid
if step_uuid:
uuid_params = param_map.get(str(step_uuid), {})
param_dict.update(uuid_params)
if param_dict:
if 'param' in param_dict and 'value' in param_dict:
param_dict[param_dict['param']] = param_dict['value']
del param_dict['param']
del param_dict['value']
# Inputs can be nested dict, but Galaxy tool code wants nesting of keys (e.g.
# cond1|moo=4 instead of cond1: {moo: 4} ).
new_params = _flatten_step_params(param_dict)
return new_params
def _flatten_step_params(param_dict, prefix=""):
# TODO: Temporary work around until tool code can process nested data
# structures. This should really happen in there so the tools API gets
# this functionality for free and so that repeats can be handled
# properly. Also the tool code walks the tool inputs so it nows what is
# a complex value object versus something that maps to child parameters
# better than the hack or searching for src and id here.
new_params = {}
for key in list(param_dict.keys()):
if prefix:
effective_key = "%s|%s" % (prefix, key)
else:
effective_key = key
value = param_dict[key]
if isinstance(value, dict) and (not ('src' in value and 'id' in value) and key != "__POST_JOB_ACTIONS__"):
new_params.update(_flatten_step_params(value, effective_key))
else:
new_params[effective_key] = value
return new_params
def _get_target_history(trans, workflow, payload, param_keys=None, index=0):
param_keys = param_keys or []
history_name = payload.get('new_history_name', None)
history_id = payload.get('history_id', None)
history_param = payload.get('history', None)
if [history_name, history_id, history_param].count(None) < 2:
raise exceptions.RequestParameterInvalidException("Specified workflow target history multiple ways - at most one of 'history', 'history_id', and 'new_history_name' may be specified.")
if history_param:
if history_param.startswith('hist_id='):
history_id = history_param[8:]
else:
history_name = history_param
if history_id:
history_manager = histories.HistoryManager(trans.app)
target_history = history_manager.get_owned(trans.security.decode_id(history_id), trans.user, current_history=trans.history)
else:
if history_name:
nh_name = history_name
else:
nh_name = 'History from %s workflow' % workflow.name
if len(param_keys) <= index:
raise exceptions.MessageException("Incorrect expansion of workflow batch parameters.")
ids = param_keys[index]
nids = len(ids)
if nids == 1:
nh_name = '%s on %s' % (nh_name, ids[0])
elif nids > 1:
nh_name = '%s on %s and %s' % (nh_name, ', '.join(ids[0:-1]), ids[-1])
new_history = trans.app.model.History(user=trans.user, name=nh_name)
trans.sa_session.add(new_history)
target_history = new_history
return target_history
[docs]def build_workflow_run_configs(trans, workflow, payload):
app = trans.app
allow_tool_state_corrections = payload.get('allow_tool_state_corrections', False)
use_cached_job = payload.get('use_cached_job', False)
# Sanity checks.
if len(workflow.steps) == 0:
raise exceptions.MessageException("Workflow cannot be run because it does not have any steps")
if workflow.has_cycles:
raise exceptions.MessageException("Workflow cannot be run because it contains cycles")
if 'step_parameters' in payload and 'parameters' in payload:
raise exceptions.RequestParameterInvalidException("Cannot specify both legacy parameters and step_parameters attributes.")
if 'inputs' in payload and 'ds_map' in payload:
raise exceptions.RequestParameterInvalidException("Cannot specify both legacy ds_map and input attributes.")
add_to_history = 'no_add_to_history' not in payload
legacy = payload.get('legacy', False)
already_normalized = payload.get('parameters_normalized', False)
raw_parameters = payload.get('parameters', {})
run_configs = []
unexpanded_param_map = _normalize_step_parameters(workflow.steps, raw_parameters, legacy=legacy, already_normalized=already_normalized)
expanded_params, expanded_param_keys = expand_workflow_inputs(unexpanded_param_map)
for index, param_map in enumerate(expanded_params):
history = _get_target_history(trans, workflow, payload, expanded_param_keys, index)
inputs = payload.get('inputs', None)
inputs_by = payload.get('inputs_by', None)
# New default is to reference steps by index of workflow step
# which is intrinsic to the workflow and independent of the state
# of Galaxy at the time of workflow import.
default_inputs_by = 'step_index|step_uuid'
if inputs is None:
# Default to legacy behavior - read ds_map and reference steps
# by unencoded step id (a raw database id).
inputs = payload.get('ds_map', {})
if legacy:
default_inputs_by = 'step_id|step_uuid'
inputs_by = inputs_by or default_inputs_by
else:
inputs = inputs or {}
inputs_by = inputs_by or default_inputs_by
if inputs or not already_normalized:
normalized_inputs = _normalize_inputs(workflow.steps, inputs, inputs_by)
else:
# Only allow dumping IDs directly into JSON database instead of properly recording the
# inputs with referential integrity if parameters are already normalized (coming from tool form).
normalized_inputs = {}
if param_map:
# disentangle raw parameter dictionaries into formal request structures if we can
# to setup proper WorkflowRequestToInputDatasetAssociation, WorkflowRequestToInputDatasetCollectionAssociation
# and WorkflowRequestInputStepParameter objects.
for step in workflow.steps:
normalized_key = step.id
if step.type == "parameter_input":
if normalized_key in param_map:
value = param_map.pop(normalized_key)
normalized_inputs[normalized_key] = value["input"]
steps_by_id = workflow.steps_by_id
# Set workflow inputs.
for key, input_dict in normalized_inputs.items():
step = steps_by_id[key]
if step.type == 'parameter_input':
continue
if 'src' not in input_dict:
raise exceptions.RequestParameterInvalidException("Not input source type defined for input '%s'." % input_dict)
if 'id' not in input_dict:
raise exceptions.RequestParameterInvalidException("Not input id defined for input '%s'." % input_dict)
if 'content' in input_dict:
raise exceptions.RequestParameterInvalidException("Input cannot specify explicit 'content' attribute %s'." % input_dict)
input_source = input_dict['src']
input_id = input_dict['id']
try:
if input_source == 'ldda':
ldda = trans.sa_session.query(app.model.LibraryDatasetDatasetAssociation).get(trans.security.decode_id(input_id))
assert trans.user_is_admin or trans.app.security_agent.can_access_dataset(trans.get_current_user_roles(), ldda.dataset)
content = ldda.to_history_dataset_association(history, add_to_history=add_to_history)
elif input_source == 'ld':
ldda = trans.sa_session.query(app.model.LibraryDataset).get(trans.security.decode_id(input_id)).library_dataset_dataset_association
assert trans.user_is_admin or trans.app.security_agent.can_access_dataset(trans.get_current_user_roles(), ldda.dataset)
content = ldda.to_history_dataset_association(history, add_to_history=add_to_history)
elif input_source == 'hda':
# Get dataset handle, add to dict and history if necessary
content = trans.sa_session.query(app.model.HistoryDatasetAssociation).get(trans.security.decode_id(input_id))
assert trans.user_is_admin or trans.app.security_agent.can_access_dataset(trans.get_current_user_roles(), content.dataset)
elif input_source == 'uuid':
dataset = trans.sa_session.query(app.model.Dataset).filter(app.model.Dataset.uuid == input_id).first()
if dataset is None:
# this will need to be changed later. If federation code is avalible, then a missing UUID
# could be found amoung fereration partners
raise exceptions.RequestParameterInvalidException("Input cannot find UUID: %s." % input_id)
assert trans.user_is_admin or trans.app.security_agent.can_access_dataset(trans.get_current_user_roles(), dataset)
content = history.add_dataset(dataset)
elif input_source == 'hdca':
content = app.dataset_collections_service.get_dataset_collection_instance(trans, 'history', input_id)
else:
raise exceptions.RequestParameterInvalidException("Unknown workflow input source '%s' specified." % input_source)
if add_to_history and content.history != history:
content = content.copy()
if isinstance(content, app.model.HistoryDatasetAssociation):
history.add_dataset(content)
else:
history.add_dataset_collection(content)
input_dict['content'] = content
except AssertionError:
raise exceptions.ItemAccessibilityException("Invalid workflow input '%s' specified" % input_id)
for key in set(normalized_inputs.keys()):
value = normalized_inputs[key]
if isinstance(value, dict) and 'content' in value:
normalized_inputs[key] = value['content']
else:
normalized_inputs[key] = value
resource_params = payload.get('resource_params', {})
if resource_params:
# quick attempt to validate parameters, just handle select options now since is what
# is needed for DTD - arbitrary plugins can define arbitrary logic at runtime in the
# destination function. In the future this should be extended to allow arbitrary
# pluggable validation.
resource_mapper_function = get_resource_mapper_function(trans.app)
# TODO: Do we need to do anything with the stored_workflow or can this be removed.
resource_parameters = resource_mapper_function(trans=trans, stored_workflow=None, workflow=workflow)
for resource_parameter in resource_parameters:
if resource_parameter.get("type") == "select":
name = resource_parameter.get("name")
if name in resource_params:
value = resource_params[name]
valid_option = False
# TODO: How should be handle the case where no selection is made by the user
# This can happen when there is a select on the page but the user has no options to select
# Here I have the validation pass it through. An alternative may be to remove the parameter if
# it is None.
if value is None:
valid_option = True
else:
for option_elem in resource_parameter.get('data'):
option_value = option_elem.get("value")
if value == option_value:
valid_option = True
if not valid_option:
raise exceptions.RequestParameterInvalidException("Invalid value for parameter '%s' found." % name)
run_configs.append(WorkflowRunConfig(
target_history=history,
replacement_dict=payload.get('replacement_params', {}),
inputs=normalized_inputs,
param_map=param_map,
allow_tool_state_corrections=allow_tool_state_corrections,
use_cached_job=use_cached_job,
resource_params=resource_params,
))
return run_configs
[docs]def workflow_run_config_to_request(trans, run_config, workflow):
param_types = model.WorkflowRequestInputParameter.types
workflow_invocation = model.WorkflowInvocation()
workflow_invocation.uuid = uuid.uuid1()
workflow_invocation.history = run_config.target_history
def add_parameter(name, value, type):
parameter = model.WorkflowRequestInputParameter(
name=name,
value=value,
type=type,
)
workflow_invocation.input_parameters.append(parameter)
steps_by_id = {}
for step in workflow.steps:
steps_by_id[step.id] = step
serializable_runtime_state = step.module.encode_runtime_state(step.state)
step_state = model.WorkflowRequestStepState()
step_state.workflow_step = step
log.info("Creating a step_state for step.id %s" % step.id)
step_state.value = serializable_runtime_state
workflow_invocation.step_states.append(step_state)
if step.type == "subworkflow":
subworkflow_run_config = WorkflowRunConfig(
target_history=run_config.target_history,
replacement_dict=run_config.replacement_dict,
copy_inputs_to_history=False,
use_cached_job=run_config.use_cached_job,
inputs={},
param_map=run_config.param_map.get(step.order_index, {}),
allow_tool_state_corrections=run_config.allow_tool_state_corrections,
resource_params=run_config.resource_params
)
subworkflow_invocation = workflow_run_config_to_request(
trans,
subworkflow_run_config,
step.subworkflow,
)
workflow_invocation.attach_subworkflow_invocation_for_step(
step,
subworkflow_invocation,
)
replacement_dict = run_config.replacement_dict
for name, value in replacement_dict.items():
add_parameter(
name=name,
value=value,
type=param_types.REPLACEMENT_PARAMETERS,
)
for step_id, content in run_config.inputs.items():
workflow_invocation.add_input(content, step_id)
for step_id, param_dict in run_config.param_map.items():
add_parameter(
name=step_id,
value=json.dumps(param_dict),
type=param_types.STEP_PARAMETERS,
)
resource_parameters = run_config.resource_params
for key, value in resource_parameters.items():
add_parameter(key, value, param_types.RESOURCE_PARAMETERS)
add_parameter("copy_inputs_to_history", "true" if run_config.copy_inputs_to_history else "false", param_types.META_PARAMETERS)
add_parameter("use_cached_job", "true" if run_config.use_cached_job else "false", param_types.META_PARAMETERS)
return workflow_invocation
[docs]def workflow_request_to_run_config(work_request_context, workflow_invocation):
param_types = model.WorkflowRequestInputParameter.types
history = workflow_invocation.history
replacement_dict = {}
inputs = {}
param_map = {}
resource_params = {}
copy_inputs_to_history = None
use_cached_job = False
for parameter in workflow_invocation.input_parameters:
parameter_type = parameter.type
if parameter_type == param_types.REPLACEMENT_PARAMETERS:
replacement_dict[parameter.name] = parameter.value
elif parameter_type == param_types.META_PARAMETERS:
if parameter.name == "copy_inputs_to_history":
copy_inputs_to_history = (parameter.value == "true")
if parameter.name == 'use_cached_job':
use_cached_job = (parameter.value == 'true')
elif parameter_type == param_types.RESOURCE_PARAMETERS:
resource_params[parameter.name] = parameter.value
elif parameter_type == param_types.STEP_PARAMETERS:
param_map[int(parameter.name)] = json.loads(parameter.value)
for input_association in workflow_invocation.input_datasets:
inputs[input_association.workflow_step_id] = input_association.dataset
for input_association in workflow_invocation.input_dataset_collections:
inputs[input_association.workflow_step_id] = input_association.dataset_collection
for input_association in workflow_invocation.input_step_parameters:
inputs[input_association.workflow_step_id] = input_association.parameter_value
if copy_inputs_to_history is None:
raise exceptions.InconsistentDatabase("Failed to find copy_inputs_to_history parameter loading workflow_invocation from database.")
workflow_run_config = WorkflowRunConfig(
target_history=history,
replacement_dict=replacement_dict,
inputs=inputs,
param_map=param_map,
copy_inputs_to_history=copy_inputs_to_history,
use_cached_job=use_cached_job,
resource_params=resource_params,
)
return workflow_run_config
def __decode_id(trans, workflow_id, model_type="workflow"):
try:
return trans.security.decode_id(workflow_id)
except Exception:
message = "Malformed %s id ( %s ) specified, unable to decode" % (model_type, workflow_id)
raise exceptions.MalformedId(message)