Warning

This document is for an old release of Galaxy. You can alternatively view this page in the latest release if it exists or view the top of the latest release's documentation.

Source code for galaxy.tools.evaluation

import json
import logging
import os
import re
import shlex
import string
import tempfile
from datetime import datetime
from typing import (
    Any,
    Callable,
    Dict,
    List,
    Optional,
    Union,
)

from galaxy import model
from galaxy.authnz.util import provider_name_to_backend
from galaxy.job_execution.compute_environment import ComputeEnvironment
from galaxy.job_execution.setup import ensure_configs_directory
from galaxy.model.deferred import (
    materialize_collection_input,
    materializer_factory,
)
from galaxy.model.none_like import NoneDataset
from galaxy.security.object_wrapper import wrap_with_safe_string
from galaxy.structured_app import (
    BasicSharedApp,
    MinimalToolApp,
)
from galaxy.tool_util.data import TabularToolDataTable
from galaxy.tools.parameters import (
    visit_input_values,
    wrapped_json,
)
from galaxy.tools.parameters.basic import (
    DataCollectionToolParameter,
    DataToolParameter,
    SelectToolParameter,
)
from galaxy.tools.parameters.grouping import (
    Conditional,
    Repeat,
    Section,
)
from galaxy.tools.wrappers import (
    DatasetCollectionWrapper,
    DatasetFilenameWrapper,
    DatasetListWrapper,
    ElementIdentifierMapper,
    InputValueWrapper,
    RawObjectWrapper,
    SelectToolParameterWrapper,
    ToolParameterValueWrapper,
)
from galaxy.util import (
    find_instance_nested,
    listify,
    RW_R__R__,
    safe_makedirs,
    unicodify,
)
from galaxy.util.template import (
    fill_template,
    InputNotFoundSyntaxError,
)
from galaxy.util.tree_dict import TreeDict
from galaxy.work.context import WorkRequestContext

log = logging.getLogger(__name__)


[docs]class ToolErrorLog:
[docs] def __init__(self): self.error_stack = [] self.max_errors = 100
[docs] def add_error(self, file, phase, exception): self.error_stack.insert( 0, {"file": file, "time": str(datetime.now()), "phase": phase, "error": unicodify(exception)} ) if len(self.error_stack) > self.max_errors: self.error_stack.pop()
global_tool_errors = ToolErrorLog()
[docs]def global_tool_logs(func, config_file, action_str): try: return func() except Exception as e: # capture and log parsing errors global_tool_errors.add_error(config_file, action_str, e) raise e
DeferrableObjectsT = Union[ model.DatasetInstance, model.HistoryDatasetCollectionAssociation, model.DatasetCollectionElement ]
[docs]class ToolEvaluator: """An abstraction linking together a tool and a job runtime to evaluate tool inputs in an isolated, testable manner. """ app: MinimalToolApp job: model.Job materialize_datasets: bool = True
[docs] def __init__(self, app: MinimalToolApp, tool, job, local_working_directory): self.app = app self.job = job self.tool = tool self.local_working_directory = local_working_directory self.file_sources_dict: Dict[str, Any] = {} self.param_dict: Dict[str, Any] = {} self.extra_filenames: List[str] = [] self.environment_variables: List[Dict[str, str]] = [] self.version_command_line: Optional[str] = None self.command_line: Optional[str] = None
[docs] def set_compute_environment(self, compute_environment: ComputeEnvironment, get_special: Optional[Callable] = None): """ Setup the compute environment and established the outline of the param_dict for evaluating command and config cheetah templates. """ self.compute_environment = compute_environment job = self.job incoming = {p.name: p.value for p in job.parameters} incoming = self.tool.params_from_strings(incoming, self.app) self.file_sources_dict = compute_environment.get_file_sources_dict() # Full parameter validation self._validate_incoming(incoming) # Restore input / output data lists inp_data, out_data, out_collections = job.io_dicts() # collect deferred datasets and collections. deferred_objects = self._deferred_objects(inp_data, incoming) # materialize deferred datasets materialized_objects = self._materialize_objects(deferred_objects, self.local_working_directory) # replace materialized objects back into tool input parameters self._replaced_deferred_objects(inp_data, incoming, materialized_objects) if get_special: special = get_special() if special: out_data["output_file"] = special # These can be passed on the command line if wanted as $__user_*__ incoming.update(model.User.user_template_environment(self._user)) # Build params, done before hook so hook can use self.param_dict = self.build_param_dict( incoming, inp_data, out_data, output_collections=out_collections, ) self.execute_tool_hooks(inp_data=inp_data, out_data=out_data, incoming=incoming)
[docs] def execute_tool_hooks(self, inp_data, out_data, incoming): # Certain tools require tasks to be completed prior to job execution # ( this used to be performed in the "exec_before_job" hook, but hooks are deprecated ). self.tool.exec_before_job(self.app, inp_data, out_data, self.param_dict) # Run the before queue ("exec_before_job") hook self.tool.call_hook( "exec_before_job", self.app, inp_data=inp_data, out_data=out_data, tool=self.tool, param_dict=incoming )
[docs] def build_param_dict(self, incoming, input_datasets, output_datasets, output_collections): """ Build the dictionary of parameters for substituting into the command line. Each value is wrapped in a `InputValueWrapper`, which allows all the attributes of the value to be used in the template, *but* when the __str__ method is called it actually calls the `to_param_dict_string` method of the associated input. """ compute_environment = self.compute_environment job_working_directory = compute_environment.working_directory() param_dict = TreeDict(self.param_dict) param_dict["__datatypes_config__"] = param_dict["GALAXY_DATATYPES_CONF_FILE"] = os.path.join( job_working_directory, "registry.xml" ) if self._history: param_dict["__history_id__"] = self.app.security.encode_id(self._history.id) param_dict["__galaxy_url__"] = self.compute_environment.galaxy_url() param_dict.update(self.tool.template_macro_params) # All parameters go into the param_dict param_dict.update(incoming) self.__populate_wrappers(param_dict, input_datasets, job_working_directory) self.__populate_input_dataset_wrappers(param_dict, input_datasets) self.__populate_output_dataset_wrappers(param_dict, output_datasets, job_working_directory) self.__populate_output_collection_wrappers(param_dict, output_collections, job_working_directory) self.__populate_unstructured_path_rewrites(param_dict) # Call param dict sanitizer, before non-job params are added, as we don't want to sanitize filenames. self.__sanitize_param_dict(param_dict) # Parameters added after this line are not sanitized self.__populate_non_job_params(param_dict) # MinimalJobWrapper.__prepare_upload_paramfile copies the paramfile to the job working directory # so we should use it (otherwise the upload tool does not work in real user setups) if self.job.tool_id == "upload1": param_dict["paramfile"] = os.path.join(job_working_directory, "upload_params.json") if "input" not in param_dict.data: def input(): raise InputNotFoundSyntaxError( "Unbound variable 'input'." ) # Don't let $input hang Python evaluation process. param_dict.data["input"] = input # Return the dictionary of parameters without injected parameters return param_dict.clean_copy()
def _materialize_objects( self, deferred_objects: Dict[str, DeferrableObjectsT], job_working_directory: str ) -> Dict[str, DeferrableObjectsT]: if not self.materialize_datasets: return {} undeferred_objects: Dict[str, DeferrableObjectsT] = {} transient_directory = os.path.join(job_working_directory, "inputs") safe_makedirs(transient_directory) dataset_materializer = materializer_factory( False, # unattached to a session. transient_directory=transient_directory, file_sources=self.app.file_sources, ) for key, value in deferred_objects.items(): if isinstance(value, model.DatasetInstance): if value.state != model.Dataset.states.DEFERRED: continue assert isinstance(value, (model.HistoryDatasetAssociation, model.LibraryDatasetDatasetAssociation)) undeferred = dataset_materializer.ensure_materialized(value) undeferred_objects[key] = undeferred else: undeferred_collection = materialize_collection_input(value, dataset_materializer) undeferred_objects[key] = undeferred_collection return undeferred_objects def _replaced_deferred_objects( self, inp_data: Dict[str, Optional[model.DatasetInstance]], incoming: dict, materalized_objects: Dict[str, DeferrableObjectsT], ): for key, value in materalized_objects.items(): if isinstance(value, model.DatasetInstance): inp_data[key] = value def replace_deferred(input, value, context, prefixed_name=None, **kwargs): if prefixed_name in materalized_objects: return materalized_objects[prefixed_name] visit_input_values(self.tool.inputs, incoming, replace_deferred) def _validate_incoming(self, incoming: dict): request_context = WorkRequestContext( app=self.app, user=self._user, history=self._history, galaxy_session=self.job.galaxy_session ) def validate_inputs(input, value, context, **kwargs): value = input.from_json(value, request_context, context) input.validate(value, request_context) visit_input_values(self.tool.inputs, incoming, validate_inputs) def _deferred_objects( self, input_datasets: Dict[str, Optional[model.DatasetInstance]], incoming: dict, ) -> Dict[str, DeferrableObjectsT]: """Collect deferred objects required for execution. Walk input datasets and collections and find inputs that need to be materialized. """ deferred_objects: Dict[str, DeferrableObjectsT] = {} for key, value in input_datasets.items(): if value is not None and value.state == model.Dataset.states.DEFERRED: deferred_objects[key] = value def find_deferred_collections(input, value, context, prefixed_name=None, **kwargs): if ( isinstance(value, (model.HistoryDatasetCollectionAssociation, model.DatasetCollectionElement)) and value.has_deferred_data ): deferred_objects[prefixed_name] = value visit_input_values(self.tool.inputs, incoming, find_deferred_collections) return deferred_objects def __walk_inputs(self, inputs, input_values, func): def do_walk(inputs, input_values): """ Wraps parameters as neccesary. """ for input in inputs.values(): if isinstance(input, Repeat): for d in input_values[input.name]: do_walk(input.inputs, d) elif isinstance(input, Conditional): values = input_values[input.name] current = values["__current_case__"] func(values, input.test_param) do_walk(input.cases[current].inputs, values) elif isinstance(input, Section): values = input_values[input.name] do_walk(input.inputs, values) else: func(input_values, input) do_walk(inputs, input_values) def __populate_wrappers(self, param_dict, input_datasets, job_working_directory): def wrap_input(input_values, input): value = input_values[input.name] if isinstance(input, DataToolParameter) and input.multiple: dataset_instances = DatasetListWrapper.to_dataset_instances(value) input_values[input.name] = DatasetListWrapper( job_working_directory, dataset_instances, compute_environment=self.compute_environment, datatypes_registry=self.app.datatypes_registry, tool=self.tool, name=input.name, formats=input.formats, ) elif isinstance(input, DataToolParameter): dataset = input_values[input.name] wrapper_kwds = dict( datatypes_registry=self.app.datatypes_registry, tool=self.tool, name=input.name, compute_environment=self.compute_environment, ) element_identifier = element_identifier_mapper.identifier(dataset, param_dict) if element_identifier: wrapper_kwds["identifier"] = element_identifier input_values[input.name] = DatasetFilenameWrapper(dataset, **wrapper_kwds) elif isinstance(input, DataCollectionToolParameter): dataset_collection = value wrapper_kwds = dict( datatypes_registry=self.app.datatypes_registry, compute_environment=self.compute_environment, tool=self.tool, name=input.name, ) wrapper = DatasetCollectionWrapper(job_working_directory, dataset_collection, **wrapper_kwds) input_values[input.name] = wrapper elif isinstance(input, SelectToolParameter): if input.multiple: value = listify(value) input_values[input.name] = SelectToolParameterWrapper( input, value, other_values=param_dict, compute_environment=self.compute_environment ) else: input_values[input.name] = InputValueWrapper( input, value, param_dict, profile=self.tool and self.tool.profile ) # HACK: only wrap if check_values is not false, this deals with external # tools where the inputs don't even get passed through. These # tools (e.g. UCSC) should really be handled in a special way. if self.tool.check_values: element_identifier_mapper = ElementIdentifierMapper(input_datasets) self.__walk_inputs(self.tool.inputs, param_dict, wrap_input) def __populate_input_dataset_wrappers(self, param_dict, input_datasets): # FIXME: when self.check_values==True, input datasets are being wrapped # twice (above and below, creating 2 separate # DatasetFilenameWrapper objects - first is overwritten by # second), is this necessary? - if we get rid of this way to # access children, can we stop this redundancy, or is there # another reason for this? # - Only necessary when self.check_values is False (==external dataset # tool?: can this be abstracted out as part of being a datasouce tool?) # For now we try to not wrap unnecessarily, but this should be untangled at some point. matches = None for name, data in input_datasets.items(): param_dict_value = param_dict.get(name, None) if data and param_dict_value is None: # We may have a nested parameter that is not fully prefixed. # We try recovering from param_dict, but tool authors should really use fully-qualified # variables if matches is None: matches = find_instance_nested(param_dict, instances=(DatasetFilenameWrapper, DatasetListWrapper)) wrapper = matches.get(name) if wrapper: param_dict[name] = wrapper continue if not isinstance(param_dict_value, (DatasetFilenameWrapper, DatasetListWrapper)): wrapper_kwds = dict( datatypes_registry=self.app.datatypes_registry, tool=self.tool, name=name, compute_environment=self.compute_environment, ) param_dict[name] = DatasetFilenameWrapper(data, **wrapper_kwds) def __populate_output_collection_wrappers(self, param_dict, output_collections, job_working_directory): tool = self.tool for name, out_collection in output_collections.items(): if name not in tool.output_collections: continue # message_template = "Name [%s] not found in tool.output_collections %s" # message = message_template % ( name, tool.output_collections ) # raise AssertionError( message ) wrapper_kwds = dict( datatypes_registry=self.app.datatypes_registry, compute_environment=self.compute_environment, io_type="output", tool=tool, name=name, ) wrapper = DatasetCollectionWrapper(job_working_directory, out_collection, **wrapper_kwds) param_dict[name] = wrapper # TODO: Handle nested collections... for element_identifier, output_def in tool.output_collections[name].outputs.items(): if not output_def.implicit: dataset_wrapper = wrapper[element_identifier] param_dict[output_def.name] = dataset_wrapper log.info(f"Updating param_dict for {output_def.name} with {dataset_wrapper}") def __populate_output_dataset_wrappers(self, param_dict, output_datasets, job_working_directory): for name, hda in output_datasets.items(): # Write outputs to the working directory (for security purposes) # if desired. param_dict[name] = DatasetFilenameWrapper( hda, compute_environment=self.compute_environment, io_type="output" ) if "|__part__|" in name: unqualified_name = name.split("|__part__|")[-1] if unqualified_name not in param_dict: param_dict[unqualified_name] = param_dict[name] output_path = str(param_dict[name]) # Conditionally create empty output: # - may already exist (e.g. symlink output) # - parent directory might not exist (e.g. Pulsar) # TODO: put into JobIO, needed for fetch_data tasks if not os.path.exists(output_path) and os.path.exists(os.path.dirname(output_path)): open(output_path, "w").close() for out_name, output in self.tool.outputs.items(): if out_name not in param_dict and output.filters: # Assume the reason we lack this output is because a filter # failed to pass; for tool writing convienence, provide a # NoneDataset ext = getattr(output, "format", None) # populate only for output datasets (not collections) param_dict[out_name] = NoneDataset(datatypes_registry=self.app.datatypes_registry, ext=ext) def __populate_non_job_params(self, param_dict): # -- Add useful attributes/functions for use in creating command line. # Function for querying a data table. def get_data_table_entry(table_name, query_attr, query_val, return_attr): """ Queries and returns an entry in a data table. """ if table_name in self.app.tool_data_tables: table = self.app.tool_data_tables[table_name] if not isinstance(table, TabularToolDataTable): raise Exception(f"Expected a TabularToolDataTable but got a {type(table)}: {table}.") return table.get_entry(query_attr, query_val, return_attr) param_dict["__tool_directory__"] = self.compute_environment.tool_directory() param_dict["__get_data_table_entry__"] = get_data_table_entry param_dict["__local_working_directory__"] = self.local_working_directory # We add access to app here, this allows access to app.config, etc param_dict["__app__"] = RawObjectWrapper(self.app) # More convienent access to app.config.new_file_path; we don't need to # wrap a string, but this method of generating additional datasets # should be considered DEPRECATED param_dict["__new_file_path__"] = self.compute_environment.new_file_path() # The following points to location (xxx.loc) files which are pointers # to locally cached data param_dict["__tool_data_path__"] = param_dict["GALAXY_DATA_INDEX_DIR"] = self.app.config.tool_data_path # For the upload tool, we need to know the root directory and the # datatypes conf path, so we can load the datatypes registry param_dict["__root_dir__"] = param_dict["GALAXY_ROOT_DIR"] = os.path.abspath(self.app.config.root) param_dict["__admin_users__"] = self.app.config.admin_users param_dict["__user__"] = RawObjectWrapper(param_dict.get("__user__", None)) def __populate_unstructured_path_rewrites(self, param_dict): def rewrite_unstructured_paths(input_values, input): if isinstance(input, SelectToolParameter): input_values[input.name] = SelectToolParameterWrapper( input, input_values[input.name], other_values=param_dict, compute_environment=self.compute_environment, ) if not self.tool.check_values and self.compute_environment: # The tools weren't "wrapped" yet, but need to be in order to get # the paths rewritten. self.__walk_inputs(self.tool.inputs, param_dict, rewrite_unstructured_paths)
[docs] def populate_interactivetools(self): """ Populate InteractiveTools templated values. """ it = [] for ep in getattr(self.tool, "ports", []): ep_dict = {} for key in "port", "name", "url", "requires_domain": val = ep.get(key, None) if val is not None and not isinstance(val, bool): val = fill_template( val, context=self.param_dict, python_template_version=self.tool.python_template_version ) clean_val = [] for line in val.split("\n"): clean_val.append(line.strip()) val = "\n".join(clean_val) val = val.replace("\n", " ").replace("\r", " ").strip() ep_dict[key] = val it.append(ep_dict) return it
def __sanitize_param_dict(self, param_dict): """ Sanitize all values that will be substituted on the command line, with the exception of ToolParameterValueWrappers, which already have their own specific sanitization rules and also exclude special-cased named values. We will only examine the first level for values to skip; the wrapping function will recurse as necessary. Note: this method follows the style of the similar populate calls, in that param_dict is modified in-place. """ # chromInfo is a filename, do not sanitize it. skip = ["chromInfo"] + list(self.tool.template_macro_params.keys()) if not self.tool or not self.tool.options or self.tool.options.sanitize: for key, value in list(param_dict.items()): if key not in skip: # Remove key so that new wrapped object will occupy key slot del param_dict[key] # And replace with new wrapped key param_dict[ wrap_with_safe_string(key, no_wrap_classes=ToolParameterValueWrapper) ] = wrap_with_safe_string(value, no_wrap_classes=ToolParameterValueWrapper)
[docs] def build(self): """ Build runtime description of job to execute, evaluate command and config templates corresponding to this tool with these inputs on this compute environment. """ config_file = self.tool.config_file global_tool_logs(self._build_config_files, config_file, "Building Config Files") global_tool_logs(self._build_param_file, config_file, "Building Param File") global_tool_logs(self._build_command_line, config_file, "Building Command Line") global_tool_logs(self._build_version_command, config_file, "Building Version Command Line") global_tool_logs(self._build_environment_variables, config_file, "Building Environment Variables") return self.command_line, self.version_command_line, self.extra_filenames, self.environment_variables
def _build_command_line(self): """ Build command line to invoke this tool given a populated param_dict """ command = self.tool.command or "" param_dict = self.param_dict interpreter = self.tool.interpreter command_line = None if not command: return try: # Substituting parameters into the command command_line = fill_template( command, context=param_dict, python_template_version=self.tool.python_template_version ) cleaned_command_line = [] # Remove leading and trailing whitespace from each line for readability. for line in command_line.split("\n"): cleaned_command_line.append(line.strip()) command_line = "\n".join(cleaned_command_line) # Remove newlines from command line, and any leading/trailing white space command_line = command_line.replace("\n", " ").replace("\r", " ").strip() except Exception: # Modify exception message to be more clear # e.args = ( 'Error substituting into command line. Params: %r, Command: %s' % ( param_dict, self.command ), ) raise if interpreter: # TODO: path munging for cluster/dataset server relocatability executable = command_line.split()[0] tool_dir = os.path.abspath(self.tool.tool_dir) abs_executable = os.path.join(tool_dir, executable) command_line = command_line.replace(executable, f"{interpreter} {shlex.quote(abs_executable)}", 1) self.command_line = command_line def _build_version_command(self): version_string_cmd_raw = self.tool.version_string_cmd if version_string_cmd_raw: version_command_template = string.Template(version_string_cmd_raw) version_command = version_command_template.safe_substitute( {"__tool_directory__": self.compute_environment.tool_directory()} ) self.version_command_line = f"{version_command} > {self.compute_environment.version_path()} 2>&1;\n" def _build_config_files(self): """ Build temporary file for file based parameter transfer if needed """ param_dict = self.param_dict config_filenames = [] for name, filename, content in self.tool.config_files: config_text, is_template = self.__build_config_file_text(content) # If a particular filename was forced by the config use it directory = ensure_configs_directory(self.local_working_directory) with tempfile.NamedTemporaryFile(dir=directory, delete=False) as temp: config_filename = temp.name if filename is not None: # Explicit filename was requested, this is implemented as symbolic link # to the actual config file that is placed in tool working directory directory = os.path.join(self.local_working_directory, "working") os.link(config_filename, os.path.join(directory, filename)) self.__write_workdir_file(config_filename, config_text, param_dict, is_template=is_template) self.__register_extra_file(name, config_filename) config_filenames.append(config_filename) return config_filenames def _build_environment_variables(self): param_dict = self.param_dict environment_variables = self.environment_variables for environment_variable_def in self.tool.environment_variables: directory = self.local_working_directory environment_variable = environment_variable_def.copy() environment_variable_template = environment_variable_def["template"] inject = environment_variable_def.get("inject") if inject == "api_key": if self._user and isinstance(self.app, BasicSharedApp): from galaxy.managers import api_keys environment_variable_template = api_keys.ApiKeyManager(self.app).get_or_create_api_key(self._user) else: environment_variable_template = "" is_template = False elif inject and inject.startswith("oidc_"): environment_variable_template = self.get_oidc_token(inject) is_template = False else: is_template = True with tempfile.NamedTemporaryFile(dir=directory, prefix="tool_env_", delete=False) as temp: config_filename = temp.name self.__write_workdir_file( config_filename, environment_variable_template, param_dict, is_template=is_template, strip=environment_variable_def.get("strip", False), ) config_file_basename = os.path.basename(config_filename) # environment setup in job file template happens before `cd $working_directory` environment_variable[ "value" ] = f'`cat "{self.compute_environment.env_config_directory()}/{config_file_basename}"`' environment_variable["raw"] = True environment_variable["job_directory_path"] = config_filename environment_variables.append(environment_variable) home_dir = self.compute_environment.home_directory() tmp_dir = self.compute_environment.tmp_directory() if home_dir: environment_variable = dict(name="HOME", value=f'"{home_dir}"', raw=True) environment_variables.append(environment_variable) if tmp_dir: for tmp_directory_var in self.tool.tmp_directory_vars: environment_variable = dict(name=tmp_directory_var, value=f'"{tmp_dir}"', raw=True) environment_variables.append(environment_variable)
[docs] def get_oidc_token(self, inject): if not self._user: return "token-unavailable" p = re.compile("^oidc_(id|access|refresh)_token_(.*)$") match = p.match(inject) provider_backend = None if match: token_type = match.group(1) provider_backend = provider_name_to_backend(match.group(2)) if not match or not provider_backend: return "token-unavailable" tokens = self._user.get_oidc_tokens(provider_backend) environment_variable_template = tokens[token_type] or "token-unavailable" return environment_variable_template
def _build_param_file(self): """ Build temporary file for file based parameter transfer if needed """ param_dict = self.param_dict directory = self.local_working_directory command = self.tool.command if self.tool.profile < 16.04 and command and "$param_file" in command: with tempfile.NamedTemporaryFile(mode="w", dir=directory, delete=False) as param: for key, value in param_dict.items(): # parameters can be strings or lists of strings, coerce to list if not isinstance(value, list): value = [value] for elem in value: param.write(f"{key}={elem}\n") self.__register_extra_file("param_file", param.name) return param.name else: return None def __build_config_file_text(self, content): if isinstance(content, str): return content, True config_type = content.get("type", "inputs") if config_type == "inputs": content_format = content["format"] handle_files = content["handle_files"] if content_format != "json": template = "Galaxy can only currently convert inputs to json, format [%s] is unhandled" message = template % content_format raise Exception(message) elif config_type == "files": file_sources_dict = self.file_sources_dict rval = json.dumps(file_sources_dict) return rval, False else: raise Exception(f"Unknown config file type {config_type}") return ( json.dumps( wrapped_json.json_wrap(self.tool.inputs, self.param_dict, self.tool.profile, handle_files=handle_files) ), False, ) def __write_workdir_file(self, config_filename, content, context, is_template=True, strip=False): parent_dir = os.path.dirname(config_filename) if not os.path.exists(parent_dir): safe_makedirs(parent_dir) if is_template: value = fill_template(content, context=context, python_template_version=self.tool.python_template_version) else: value = unicodify(content) if strip: value = value.strip() with open(config_filename, "w", encoding="utf-8") as f: f.write(value) # For running jobs as the actual user, ensure the config file is globally readable os.chmod(config_filename, RW_R__R__) def __register_extra_file(self, name, local_config_path): """ Takes in the local path to a config file and registers the (potentially remote) ultimate path of the config file with the parameter dict. """ self.extra_filenames.append(local_config_path) config_basename = os.path.basename(local_config_path) compute_config_path = self.__join_for_compute(self.compute_environment.config_directory(), config_basename) self.param_dict[name] = compute_config_path def __join_for_compute(self, *args): """ os.path.join but with compute_environment.sep for cross-platform compat. """ return self.compute_environment.sep().join(args) @property def _history(self): return self.job.history @property def _user(self): history = self._history if history: return history.user else: return self.job.user
[docs]class PartialToolEvaluator(ToolEvaluator): """ ToolEvaluator that only builds Environment Variables. """ materialize_datasets = False
[docs] def build(self): config_file = self.tool.config_file global_tool_logs(self._build_environment_variables, config_file, "Building Environment Variables") return self.command_line, self.version_command_line, self.extra_filenames, self.environment_variables
[docs]class RemoteToolEvaluator(ToolEvaluator): """ToolEvaluator that skips unnecessary steps already executed during job setup.""" materialize_datasets = True
[docs] def execute_tool_hooks(self, inp_data, out_data, incoming): # These have already run while preparing the job pass
[docs] def build(self): config_file = self.tool.config_file global_tool_logs(self._build_config_files, config_file, "Building Config Files") global_tool_logs(self._build_param_file, config_file, "Building Param File") global_tool_logs(self._build_command_line, config_file, "Building Command Line") global_tool_logs(self._build_version_command, config_file, "Building Version Command Line") return self.command_line, self.version_command_line, self.extra_filenames, self.environment_variables