Warning

This document is for an old release of Galaxy. You can alternatively view this page in the latest release if it exists or view the top of the latest release's documentation.

Source code for galaxy.job_execution.setup

"""Utilities to help job and tool code setup jobs."""
import json
import os
from typing import (
    Any,
    cast,
    Dict,
    List,
    Optional,
    Tuple,
    Union,
)

from galaxy.files import (
    ConfiguredFileSources,
    DictFileSourcesUserContext,
    ProvidesUserFileSourcesUserContext,
)
from galaxy.job_execution.datasets import (
    DatasetPath,
    DatasetPathRewriter,
    get_path_rewriter,
)
from galaxy.model import (
    DatasetInstance,
    Job,
    JobExportHistoryArchive,
    MetadataFile,
)
from galaxy.util import safe_makedirs
from galaxy.util.dictifiable import Dictifiable

TOOL_PROVIDED_JOB_METADATA_FILE = "galaxy.json"
TOOL_PROVIDED_JOB_METADATA_KEYS = ["name", "info", "dbkey", "created_from_basename"]


OutputHdasAndType = Dict[str, Tuple[DatasetInstance, DatasetPath]]
OutputPaths = List[DatasetPath]


[docs]class JobIO(Dictifiable): dict_collection_visible_keys = ( "job_id", "working_directory", "outputs_directory", "outputs_to_working_directory", "galaxy_url", "version_path", "tool_directory", "home_directory", "tmp_directory", "tool_data_path", "galaxy_data_manager_data_path", "new_file_path", "len_file_path", "builds_file_path", "file_sources_dict", "check_job_script_integrity", "check_job_script_integrity_count", "check_job_script_integrity_sleep", "tool_source", "tool_source_class", "tool_dir", "is_task", )
[docs] def __init__( self, sa_session, job: Job, working_directory: str, outputs_directory: str, outputs_to_working_directory: bool, galaxy_url: str, version_path: str, tool_directory: str, home_directory: str, tmp_directory: str, tool_data_path: str, galaxy_data_manager_data_path: str, new_file_path: str, len_file_path: str, builds_file_path: str, check_job_script_integrity: bool, check_job_script_integrity_count: int, check_job_script_integrity_sleep: float, file_sources_dict: Dict[str, Any], user_context: Union[ProvidesUserFileSourcesUserContext, Dict["str", Any]], tool_source: Optional[str] = None, tool_source_class: Optional["str"] = "XmlToolSource", tool_dir: Optional[str] = None, is_task: bool = False, ): user_context_instance: Union[ProvidesUserFileSourcesUserContext, DictFileSourcesUserContext] if isinstance(user_context, dict): user_context_instance = DictFileSourcesUserContext(**user_context) else: user_context_instance = user_context self.file_sources_dict = file_sources_dict self.user_context = user_context_instance self.sa_session = sa_session self.job = job self.job_id = job.id self.working_directory = working_directory self.outputs_directory = outputs_directory self.outputs_to_working_directory = outputs_to_working_directory self.galaxy_url = galaxy_url self.version_path = version_path self.tool_directory = tool_directory self.home_directory = home_directory self.tmp_directory = tmp_directory self.tool_data_path = tool_data_path self.galaxy_data_manager_data_path = galaxy_data_manager_data_path self.new_file_path = new_file_path self.len_file_path = len_file_path self.builds_file_path = builds_file_path self.check_job_script_integrity = check_job_script_integrity self.check_job_script_integrity_count = check_job_script_integrity_count self.check_job_script_integrity_sleep = check_job_script_integrity_sleep self.tool_dir = tool_dir self.is_task = is_task self.tool_source = tool_source self.tool_source_class = tool_source_class self._output_paths: Optional[OutputPaths] = None self._output_hdas_and_paths: Optional[OutputHdasAndType] = None self._dataset_path_rewriter: Optional[DatasetPathRewriter] = None
[docs] @classmethod def from_json(cls, path, sa_session): with open(path) as job_io_serialized: io_dict = json.load(job_io_serialized) return cls.from_dict(io_dict=io_dict, sa_session=sa_session)
[docs] @classmethod def from_dict(cls, io_dict, sa_session): io_dict.pop("model_class") job_id = io_dict.pop("job_id") job = sa_session.query(Job).get(job_id) return cls(sa_session=sa_session, job=job, **io_dict)
[docs] def to_dict(self): io_dict = super().to_dict() io_dict["user_context"] = self.user_context.to_dict() return io_dict
[docs] def to_json(self, path): with open(path, "w") as out: out.write(json.dumps(self.to_dict()))
@property def file_sources(self) -> ConfiguredFileSources: return ConfiguredFileSources.from_dict(self.file_sources_dict) @property def dataset_path_rewriter(self) -> DatasetPathRewriter: if self._dataset_path_rewriter is None: self._dataset_path_rewriter = get_path_rewriter( outputs_to_working_directory=self.outputs_to_working_directory, working_directory=self.working_directory, outputs_directory=self.outputs_directory, is_task=self.is_task, ) assert self._dataset_path_rewriter is not None return self._dataset_path_rewriter @property def output_paths(self) -> OutputPaths: if self._output_paths is None: self.compute_outputs() return cast(OutputPaths, self._output_paths) @property def output_hdas_and_paths(self) -> OutputHdasAndType: if self._output_hdas_and_paths is None: self.compute_outputs() return cast(OutputHdasAndType, self._output_hdas_and_paths)
[docs] def get_input_dataset_fnames(self, ds: DatasetInstance) -> List[str]: filenames = [ds.file_name] # we will need to stage in metadata file names also # TODO: would be better to only stage in metadata files that are actually needed (found in command line, referenced in config files, etc.) for value in ds.metadata.values(): if isinstance(value, MetadataFile): filenames.append(value.file_name) return filenames
[docs] def get_input_fnames(self) -> List[str]: job = self.job filenames = [] for da in job.input_datasets + job.input_library_datasets: # da is JobToInputDatasetAssociation object if da.dataset: filenames.extend(self.get_input_dataset_fnames(da.dataset)) return filenames
[docs] def get_input_paths(self) -> List[DatasetPath]: job = self.job paths = [] for da in job.input_datasets + job.input_library_datasets: # da is JobToInputDatasetAssociation object if da.dataset: paths.append(self.get_input_path(da.dataset)) return paths
[docs] def get_input_path(self, dataset: DatasetInstance) -> DatasetPath: real_path = dataset.file_name false_path = self.dataset_path_rewriter.rewrite_dataset_path(dataset, "input") return DatasetPath( dataset.dataset.id, real_path=real_path, false_path=false_path, mutable=False, dataset_uuid=dataset.dataset.uuid, object_store_id=dataset.dataset.object_store_id, )
[docs] def get_output_basenames(self) -> List[str]: return [os.path.basename(str(fname)) for fname in self.get_output_fnames()]
[docs] def get_output_fnames(self) -> OutputPaths: return self.output_paths
[docs] def get_output_path(self, dataset): if getattr(dataset, "fake_dataset_association", False): return dataset.file_name assert dataset.id is not None, f"{dataset} needs to be flushed to find output path" for (hda, dataset_path) in self.output_hdas_and_paths.values(): if hda.id == dataset.id: return dataset_path raise KeyError(f"Couldn't find job output for [{dataset}] in [{self.output_hdas_and_paths.values()}]")
[docs] def get_mutable_output_fnames(self): return [dsp for dsp in self.output_paths if dsp.mutable]
[docs] def get_output_hdas_and_fnames(self) -> OutputHdasAndType: return self.output_hdas_and_paths
[docs] def compute_outputs(self) -> None: dataset_path_rewriter = self.dataset_path_rewriter job = self.job # Job output datasets are combination of history, library, and jeha datasets. special = self.sa_session.query(JobExportHistoryArchive).filter_by(job=job).first() false_path = None results = [] for da in job.output_datasets + job.output_library_datasets: da_false_path = dataset_path_rewriter.rewrite_dataset_path(da.dataset, "output") mutable = da.dataset.dataset.external_filename is None dataset_path = DatasetPath( da.dataset.dataset.id, da.dataset.file_name, false_path=da_false_path, mutable=mutable ) results.append((da.name, da.dataset, dataset_path)) self._output_paths = [t[2] for t in results] self._output_hdas_and_paths = {t[0]: t[1:] for t in results} if special: false_path = dataset_path_rewriter.rewrite_dataset_path(special, "output") dsp = DatasetPath(special.dataset.id, special.dataset.file_name, false_path) self._output_paths.append(dsp) self._output_hdas_and_paths["output_file"] = (special.fda, dsp)
[docs] def get_output_file_id(self, file: str) -> Optional[int]: for dp in self.output_paths: if self.outputs_to_working_directory and os.path.basename(dp.false_path) == file: return dp.dataset_id elif os.path.basename(dp.real_path) == file: return dp.dataset_id return None
[docs]def ensure_configs_directory(work_dir: str) -> str: configs_dir = os.path.join(work_dir, "configs") if not os.path.exists(configs_dir): safe_makedirs(configs_dir) return configs_dir
[docs]def create_working_directory_for_job(object_store, job) -> str: object_store.create(job, base_dir="job_work", dir_only=True, obj_dir=True) working_directory = object_store.get_filename(job, base_dir="job_work", dir_only=True, obj_dir=True) return working_directory