Warning
This document is for an in-development version of Galaxy. You can alternatively view this page in the latest release if it exists or view the top of the latest release's documentation.
Source code for galaxy.tool_util.parser.output_objects
from collections import OrderedDict
from galaxy.util.dictifiable import Dictifiable
from .output_actions import ToolOutputActionGroup
from .output_collection_def import dataset_collector_descriptions_from_output_dict
[docs]class ToolOutputBase(Dictifiable):
[docs] def __init__(self, name, label=None, filters=None, hidden=False):
super().__init__()
self.name = name
self.label = label
self.filters = filters or []
self.hidden = hidden
self.collection = False
[docs] def to_dict(self, view='collection', value_mapper=None, app=None):
return super().to_dict(view=view, value_mapper=value_mapper)
[docs]class ToolOutput(ToolOutputBase):
"""
Represents an output datasets produced by a tool. For backward
compatibility this behaves as if it were the tuple::
(format, metadata_source, parent)
"""
dict_collection_visible_keys = ['name', 'format', 'label', 'hidden', 'output_type', 'format_source',
'default_identifier_source', 'metadata_source', 'parent', 'count', 'from_work_dir']
[docs] def __init__(self, name, format=None, format_source=None, metadata_source=None,
parent=None, label=None, filters=None, actions=None, hidden=False,
implicit=False):
super().__init__(name, label=label, filters=filters, hidden=hidden)
self.output_type = "data"
self.format = format
self.format_source = format_source
self.metadata_source = metadata_source
self.parent = parent
self.actions = actions
# Initialize default values
self.change_format = []
self.implicit = implicit
self.from_work_dir = None
# Tuple emulation
def __len__(self):
return 3
def __getitem__(self, index):
if index == 0:
return self.format
elif index == 1:
return self.metadata_source
elif index == 2:
return self.parent
else:
raise IndexError(index)
def __iter__(self):
return iter((self.format, self.metadata_source, self.parent))
[docs] def to_dict(self, view='collection', value_mapper=None, app=None):
as_dict = super().to_dict(view=view, value_mapper=value_mapper, app=app)
format = self.format
if format and format != "input" and app:
edam_format = app.datatypes_registry.edam_formats.get(self.format)
as_dict["edam_format"] = edam_format
edam_data = app.datatypes_registry.edam_data.get(self.format)
as_dict["edam_data"] = edam_data
as_dict['discover_datasets'] = list(map(lambda d: d.to_dict(), self.dataset_collector_descriptions))
return as_dict
[docs] @staticmethod
def from_dict(name, output_dict, tool=None):
output = ToolOutput(name)
output.format = output_dict.get("format", "data")
output.change_format = []
output.format_source = output_dict.get("format_source", None)
output.default_identifier_source = output_dict.get("default_identifier_source", None)
output.metadata_source = output_dict.get("metadata_source", "")
output.parent = output_dict.get("parent", None)
output.label = output_dict.get("label", None)
output.count = output_dict.get("count", 1)
output.filters = []
output.tool = tool
output.from_work_dir = output_dict.get("from_work_dir", None)
output.hidden = output_dict.get("hidden", "")
# TODO: implement tool output action group fixes
output.actions = ToolOutputActionGroup(output, None)
output.dataset_collector_descriptions = dataset_collector_descriptions_from_output_dict(output_dict)
return output
[docs]class ToolExpressionOutput(ToolOutputBase):
dict_collection_visible_keys = ('name', 'format', 'label', 'hidden', 'output_type')
[docs] def __init__(self, name, output_type, from_expression,
label=None, filters=None, actions=None, hidden=False):
super().__init__(name, label=label, filters=filters, hidden=hidden)
self.output_type = output_type # JSON type...
self.from_expression = from_expression
self.format = "expression.json" # galaxy.datatypes.text.ExpressionJson.file_ext
self.format_source = None
self.metadata_source = None
self.parent = None
self.actions = actions
# Initialize default values
self.change_format = []
self.implicit = False
self.from_work_dir = None
[docs]class ToolOutputCollection(ToolOutputBase):
"""
Represents a HistoryDatasetCollectionAssociation of output datasets produced
by a tool.
<outputs>
<collection type="list" label="${tool.name} on ${on_string} fasta">
<discover_datasets pattern="__name__" ext="fasta" visible="True" directory="outputFiles" />
</collection>
<collection type="paired" label="${tool.name} on ${on_string} paired reads">
<data name="forward" format="fastqsanger" />
<data name="reverse" format="fastqsanger"/>
</collection>
<outputs>
"""
dict_collection_visible_keys = ['name', 'format', 'label', 'hidden', 'output_type', 'default_format',
'default_format_source', 'default_metadata_source', 'inherit_format', 'inherit_metadata']
[docs] def __init__(
self,
name,
structure,
label=None,
filters=None,
hidden=False,
default_format="data",
default_format_source=None,
default_metadata_source=None,
inherit_format=False,
inherit_metadata=False
):
super().__init__(name, label=label, filters=filters, hidden=hidden)
self.output_type = "collection"
self.collection = True
self.default_format = default_format
self.structure = structure
self.outputs = OrderedDict()
self.inherit_format = inherit_format
self.inherit_metadata = inherit_metadata
self.metadata_source = default_metadata_source
self.format_source = default_format_source
self.change_format = [] # TODO
[docs] def known_outputs(self, inputs, type_registry):
if self.dynamic_structure:
return []
# This line is probably not right - should verify structured_like
# or have outputs and all outputs have name.
if len(self.outputs) > 1:
output_parts = [ToolOutputCollectionPart(self, k, v) for k, v in self.outputs.items()]
else:
collection_prototype = self.structure.collection_prototype(inputs, type_registry)
def prototype_dataset_element_to_output(element, parent_ids=[]):
name = element.element_identifier
format = self.default_format
if self.inherit_format:
format = element.dataset_instance.ext
output = ToolOutput(
name,
format=format,
format_source=self.format_source,
metadata_source=self.metadata_source,
implicit=True,
)
if self.inherit_metadata:
output.metadata_source = element.dataset_instance
return ToolOutputCollectionPart(
self,
element.element_identifier,
output,
parent_ids=parent_ids,
)
def prototype_collection_to_output(collection_prototype, parent_ids=[]):
output_parts = []
for element in collection_prototype.elements:
element_parts = []
if not element.is_collection:
element_parts.append(prototype_dataset_element_to_output(element, parent_ids))
else:
new_parent_ids = parent_ids[:] + [element.element_identifier]
element_parts.extend(prototype_collection_to_output(element.element_object, new_parent_ids))
output_parts.extend(element_parts)
return output_parts
output_parts = prototype_collection_to_output(collection_prototype)
return output_parts
@property
def dynamic_structure(self):
return self.structure.dynamic
@property
def dataset_collector_descriptions(self):
if not self.dynamic_structure:
raise Exception("dataset_collector_descriptions called for output collection with static structure")
return self.structure.dataset_collector_descriptions
[docs] def to_dict(self, view='collection', value_mapper=None, app=None):
as_dict = super().to_dict(view=view, value_mapper=value_mapper, app=app)
as_dict['structure'] = self.structure.to_dict()
return as_dict
[docs] @staticmethod
def from_dict(name, output_dict, tool=None):
structure = ToolOutputCollectionStructure.from_dict(output_dict["structure"])
rval = ToolOutputCollection(
name,
structure=structure,
label=output_dict.get("label", None),
filters=None,
hidden=output_dict.get("hidden", False),
default_format=output_dict.get("default_format", "data"),
default_format_source=output_dict.get("default_format_source", None),
default_metadata_source=output_dict.get("default_metadata_source", None),
inherit_format=output_dict.get("inherit_format", False),
inherit_metadata=output_dict.get("inherit_metadata", False),
)
return rval
[docs]class ToolOutputCollectionStructure:
[docs] def __init__(
self,
collection_type,
collection_type_source=None,
collection_type_from_rules=None,
structured_like=None,
dataset_collector_descriptions=None,
):
self.collection_type = collection_type
self.collection_type_source = collection_type_source
self.collection_type_from_rules = collection_type_from_rules
self.structured_like = structured_like
self.dataset_collector_descriptions = dataset_collector_descriptions or []
if collection_type and collection_type_source:
raise ValueError("Cannot set both type and type_source on collection output.")
if collection_type is None and structured_like is None and dataset_collector_descriptions is None and collection_type_source is None and collection_type_from_rules is None:
raise ValueError("Output collection types must specify source of collection type information (e.g. structured_like or type_source).")
if dataset_collector_descriptions and (structured_like or collection_type_from_rules):
raise ValueError("Cannot specify dynamic structure (discovered_datasets) and collection type attributes structured_like or collection_type_from_rules.")
self.dynamic = bool(dataset_collector_descriptions)
[docs] def collection_prototype(self, inputs, type_registry):
# either must have specified structured_like or something worse
if self.structured_like:
collection_prototype = inputs[self.structured_like].collection
else:
collection_type = self.collection_type
assert collection_type
collection_prototype = type_registry.prototype(collection_type)
collection_prototype.collection_type = collection_type
return collection_prototype
[docs] def to_dict(self):
return {
'collection_type': self.collection_type,
'collection_type_source': self.collection_type_source,
'collection_type_from_rules': self.collection_type_from_rules,
'structured_like': self.structured_like,
'discover_datasets': [d.to_dict() for d in self.dataset_collector_descriptions],
}
[docs] @staticmethod
def from_dict(as_dict):
structure = ToolOutputCollectionStructure(
collection_type=as_dict['collection_type'],
collection_type_source=as_dict['collection_type_source'],
collection_type_from_rules=as_dict['collection_type_from_rules'],
structured_like=as_dict['structured_like'],
dataset_collector_descriptions=dataset_collector_descriptions_from_output_dict(as_dict),
)
return structure
[docs]class ToolOutputCollectionPart:
[docs] def __init__(self, output_collection_def, element_identifier, output_def, parent_ids=[]):
self.output_collection_def = output_collection_def
self.element_identifier = element_identifier
self.output_def = output_def
self.parent_ids = parent_ids
@property
def effective_output_name(self):
name = self.output_collection_def.name
part_name = self.element_identifier
effective_output_name = "{}|__part__|{}".format(name, part_name)
return effective_output_name
[docs] @staticmethod
def split_output_name(name):
assert ToolOutputCollectionPart.is_named_collection_part_name(name)
return name.split("|__part__|")