Warning
This document is for an in-development version of Galaxy. You can alternatively view this page in the latest release if it exists or view the top of the latest release's documentation.
Source code for galaxy.model.dataset_collections.structure
""" Module for reasoning about structure of and matching hierarchical collections of data.
"""
import logging
log = logging.getLogger(__name__)
[docs]class Leaf:
children_known = True
def __len__(self):
return 1
@property
def is_leaf(self):
return True
def __str__(self):
return "Leaf[]"
leaf = Leaf()
[docs]class BaseTree:
[docs] def __init__(self, collection_type_description):
self.collection_type_description = collection_type_description
[docs]class UninitializedTree(BaseTree):
children_known = False
@property
def is_leaf(self):
return False
def __len__(self):
raise Exception("Unknown length")
[docs] def multiply(self, other_structure):
if other_structure.is_leaf:
return self.clone()
new_collection_type = self.collection_type_description.multiply(other_structure.collection_type_description)
return UninitializedTree(new_collection_type)
def __str__(self):
return "UninitializedTree[collection_type=%s]" % self.collection_type_description
[docs]class Tree(BaseTree):
children_known = True
[docs] def __init__(self, children, collection_type_description):
super().__init__(collection_type_description)
self.children = children
[docs] @staticmethod
def for_dataset_collection(dataset_collection, collection_type_description):
children = []
for element in dataset_collection.elements:
if collection_type_description.has_subcollections():
child_collection = element.child_collection
subcollection_type_description = collection_type_description.subcollection_type_description() # Type description of children
tree = Tree.for_dataset_collection(child_collection, collection_type_description=subcollection_type_description)
children.append((element.element_identifier, tree))
else:
children.append((element.element_identifier, leaf))
return Tree(children, collection_type_description)
[docs] def walk_collections(self, hdca_dict):
return self._walk_collections(dict_map(lambda hdca: hdca.collection, hdca_dict))
def _walk_collections(self, collection_dict):
for index, (identifier, substructure) in enumerate(self.children):
def element(collection):
return collection[index]
if substructure.is_leaf:
yield dict_map(element, collection_dict)
else:
sub_collections = dict_map(lambda collection: element(collection).child_collection, collection_dict)
for element in substructure._walk_collections(sub_collections):
yield element
@property
def is_leaf(self):
return False
[docs] def can_match(self, other_structure):
if not self.collection_type_description.can_match_type(other_structure.collection_type_description):
return False
if len(self.children) != len(other_structure.children):
return False
for my_child, other_child in zip(self.children, other_structure.children):
# At least one is nested collection...
if my_child[1].is_leaf != other_child[1].is_leaf:
return False
if not my_child[1].is_leaf and not my_child[1].can_match(other_child[1]):
return False
return True
def __len__(self):
return sum([len(c[1]) for c in self.children])
[docs] def multiply(self, other_structure):
if other_structure.is_leaf:
return self.clone()
new_collection_type = self.collection_type_description.multiply(other_structure.collection_type_description)
new_children = []
for (identifier, structure) in self.children:
new_children.append((identifier, structure.multiply(other_structure)))
return Tree(new_children, new_collection_type)
[docs] def clone(self):
cloned_children = [(_[0], _[1].clone()) for _ in self.children]
return Tree(cloned_children, self.collection_type_description)
def __str__(self):
return "Tree[collection_type={},children={}]".format(self.collection_type_description, ",".join(map(lambda identifier_and_element: "{}={}".format(identifier_and_element[0], identifier_and_element[1]), self.children)))
[docs]def tool_output_to_structure(get_sliced_input_collection_structure, tool_output, collections_manager):
if not tool_output.collection:
tree = leaf
else:
collection_type_descriptions = collections_manager.collection_type_descriptions
# Okay this is ToolCollectionOutputStructure not a Structure - different
# concepts of structure.
structured_like = tool_output.structure.structured_like
collection_type = tool_output.structure.collection_type
if structured_like:
tree = get_sliced_input_collection_structure(structured_like)
if collection_type and tree.collection_type_description.collection_type != collection_type:
# See tool paired_collection_map_over_structured_like - type should
# override structured_like if they disagree.
tree = UninitializedTree(collection_type_descriptions.for_collection_type(collection_type))
else:
# Can't pre-compute the structure in this case, see if we can find a collection type.
if collection_type is None and tool_output.structure.collection_type_source:
collection_type = get_sliced_input_collection_structure(tool_output.structure.collection_type_source).collection_type_description.collection_type
if not collection_type:
raise Exception("Failed to determine collection type for mapping over output %s" % tool_output.name)
tree = UninitializedTree(collection_type_descriptions.for_collection_type(collection_type))
if not tree.children_known and tree.collection_type_description.collection_type == "paired":
# TODO: We don't need to return UninitializedTree for pairs I think, we should build
# a paired tree for the known structure here.
pass
return tree
[docs]def get_structure(dataset_collection_instance, collection_type_description, leaf_subcollection_type=None):
if leaf_subcollection_type:
collection_type_description = collection_type_description.effective_collection_type_description(leaf_subcollection_type)
if hasattr(dataset_collection_instance, 'child_collection'):
collection_type_description = collection_type_description.collection_type_description_factory.for_collection_type(leaf_subcollection_type)
return UninitializedTree(collection_type_description)
collection = dataset_collection_instance.collection
return Tree.for_dataset_collection(collection, collection_type_description)