Warning

This document is for an in-development version of Galaxy. You can alternatively view this page in the latest release if it exists or view the top of the latest release's documentation.

Source code for galaxy.tools.actions.model_operations

import logging
from collections import OrderedDict

from galaxy.tools.actions import (
    DefaultToolAction,
    OutputCollections,
    ToolExecutionCache,
)

log = logging.getLogger(__name__)


[docs]class ModelOperationToolAction(DefaultToolAction): produces_real_jobs = False
[docs] def check_inputs_ready(self, tool, trans, incoming, history, execution_cache=None, collection_info=None): if execution_cache is None: execution_cache = ToolExecutionCache(trans) current_user_roles = execution_cache.current_user_roles history, inp_data, inp_dataset_collections, _, _ = self._collect_inputs(tool, trans, incoming, history, current_user_roles, collection_info) tool.check_inputs_ready(inp_data, inp_dataset_collections)
[docs] def execute(self, tool, trans, incoming={}, set_output_hid=False, overwrite=True, history=None, job_params=None, execution_cache=None, collection_info=None, **kwargs): trans.check_user_activation() if execution_cache is None: execution_cache = ToolExecutionCache(trans) current_user_roles = execution_cache.current_user_roles history, inp_data, inp_dataset_collections, preserved_tags, all_permissions = self._collect_inputs(tool, trans, incoming, history, current_user_roles, collection_info) # Build name for output datasets based on tool name and input names on_text = self._get_on_text(inp_data) # wrapped params are used by change_format action and by output.label; only perform this wrapping once, as needed wrapped_params = self._wrapped_params(trans, tool, incoming) out_data = OrderedDict() input_collections = dict((k, v[0][0]) for k, v in inp_dataset_collections.items()) output_collections = OutputCollections( trans, history, tool=tool, tool_action=self, input_collections=input_collections, dataset_collection_elements=kwargs.get("dataset_collection_elements", None), on_text=on_text, incoming=incoming, params=wrapped_params.params, job_params=job_params, tags=preserved_tags, ) # # Create job. # job, galaxy_session = self._new_job_for_session(trans, tool, history) self._produce_outputs(trans, tool, out_data, output_collections, incoming=incoming, history=history, tags=preserved_tags) self._record_inputs(trans, tool, job, incoming, inp_data, inp_dataset_collections) self._record_outputs(job, out_data, output_collections) job.state = job.states.OK trans.sa_session.add(job) trans.sa_session.flush() # ensure job.id are available # Queue the job for execution # trans.app.job_manager.job_queue.put( job.id, tool.id ) # trans.log_event( "Added database job action to the job queue, id: %s" % str(job.id), tool_id=job.tool_id ) log.info("Calling produce_outputs, tool is %s" % tool) return job, out_data
def _produce_outputs(self, trans, tool, out_data, output_collections, incoming, history, tags): tool.produce_outputs(trans, out_data, output_collections, incoming, history=history, tags=tags) mapped_over_elements = output_collections.dataset_collection_elements if mapped_over_elements: for name, value in out_data.items(): if name in mapped_over_elements: value.visible = False mapped_over_elements[name].hda = value trans.sa_session.add_all(out_data.values()) trans.sa_session.flush()