Warning
This document is for an in-development version of Galaxy. You can alternatively view this page in the latest release if it exists or view the top of the latest release's documentation.
Source code for galaxy.tools.actions.metadata
import logging
import os
from collections import OrderedDict
from json import dumps
from galaxy.job_execution.datasets import DatasetPath
from galaxy.metadata import get_metadata_compute_strategy
from galaxy.util import asbool
from . import ToolAction
log = logging.getLogger(__name__)
[docs]class SetMetadataToolAction(ToolAction):
"""Tool action used for setting external metadata on an existing dataset"""
produces_real_jobs = False
[docs] def execute(self, tool, trans, incoming={}, set_output_hid=False, overwrite=True, history=None, job_params=None, **kwargs):
"""
Execute using a web transaction.
"""
trans.check_user_activation()
session = trans.get_galaxy_session()
session_id = session and session.id
history_id = trans.history and trans.history.id
job, odict = self.execute_via_app(tool, trans.app, session_id,
history_id, trans.user, incoming, set_output_hid,
overwrite, history, job_params)
# FIXME: can remove this when logging in execute_via_app method.
trans.log_event("Added set external metadata job to the job queue, id: %s" % str(job.id), tool_id=job.tool_id)
return job, odict
[docs] def execute_via_app(self, tool, app, session_id, history_id, user=None,
incoming={}, set_output_hid=False, overwrite=True,
history=None, job_params=None):
"""
Execute using application.
"""
for name, value in incoming.items():
# Why are we looping here and not just using a fixed input name? Needed?
if not name.startswith("input"):
continue
if isinstance(value, app.model.HistoryDatasetAssociation):
dataset = value
dataset_name = name
type = 'hda'
break
elif isinstance(value, app.model.LibraryDatasetDatasetAssociation):
dataset = value
dataset_name = name
type = 'ldda'
break
else:
raise Exception('The dataset to set metadata on could not be determined.')
sa_session = app.model.context
# Create the job object
job = app.model.Job()
job.galaxy_version = app.config.version_major
job.session_id = session_id
job.history_id = history_id
job.tool_id = tool.id
if user:
job.user_id = user.id
if job_params:
job.params = dumps(job_params)
start_job_state = job.state # should be job.states.NEW
try:
# For backward compatibility, some tools may not have versions yet.
job.tool_version = tool.version
except AttributeError:
job.tool_version = "1.0.1"
job.dynamic_tool = tool.dynamic_tool
job.state = job.states.WAITING # we need to set job state to something other than NEW, or else when tracking jobs in db it will be picked up before we have added input / output parameters
sa_session.add(job)
sa_session.flush() # ensure job.id is available
# add parameters to job_parameter table
# Store original dataset state, so we can restore it. A separate table might be better (no chance of 'losing' the original state)?
incoming['__ORIGINAL_DATASET_STATE__'] = dataset.state
input_paths = [DatasetPath(dataset.id, real_path=dataset.file_name, mutable=False)]
app.object_store.create(job, base_dir='job_work', dir_only=True, extra_dir=str(job.id))
job_working_dir = app.object_store.get_filename(job, base_dir='job_work', dir_only=True, extra_dir=str(job.id))
datatypes_config = os.path.join(job_working_dir, 'registry.xml')
app.datatypes_registry.to_xml_file(path=datatypes_config)
external_metadata_wrapper = get_metadata_compute_strategy(app.config, job.id)
output_datatasets_dict = {
dataset_name: dataset,
}
validate_outputs = asbool(incoming.get("validate", False))
cmd_line = external_metadata_wrapper.setup_external_metadata(output_datatasets_dict,
{},
sa_session,
exec_dir=None,
tmp_dir=job_working_dir,
dataset_files_path=app.model.Dataset.file_path,
output_fnames=input_paths,
config_root=app.config.root,
config_file=app.config.config_file,
datatypes_config=datatypes_config,
job_metadata=os.path.join(job_working_dir, 'working', tool.provided_metadata_file),
include_command=False,
validate_outputs=validate_outputs,
max_metadata_value_size=app.config.max_metadata_value_size,
kwds={'overwrite': overwrite})
incoming['__SET_EXTERNAL_METADATA_COMMAND_LINE__'] = cmd_line
for name, value in tool.params_to_strings(incoming, app).items():
job.add_parameter(name, value)
# add the dataset to job_to_input_dataset table
if type == 'hda':
job.add_input_dataset(dataset_name, dataset)
elif type == 'ldda':
job.add_input_library_dataset(dataset_name, dataset)
# Need a special state here to show that metadata is being set and also allow the job to run
# i.e. if state was set to 'running' the set metadata job would never run, as it would wait for input (the dataset to set metadata on) to be in a ready state
dataset._state = dataset.states.SETTING_METADATA
job.state = start_job_state # job inputs have been configured, restore initial job state
sa_session.flush()
# Queue the job for execution
app.job_manager.enqueue(job, tool=tool)
# FIXME: need to add event logging to app and log events there rather than trans.
# trans.log_event( "Added set external metadata job to the job queue, id: %s" % str(job.id), tool_id=job.tool_id )
# clear e.g. converted files
dataset.datatype.before_setting_metadata(dataset)
return job, OrderedDict()