Warning

This document is for an old release of Galaxy. You can alternatively view this page in the latest release if it exists or view the top of the latest release's documentation.

Source code for galaxy.tools.parser.output_objects

from galaxy.util.dictifiable import Dictifiable
from galaxy.util.odict import odict


[docs]class ToolOutputBase(Dictifiable):
[docs] def __init__(self, name, label=None, filters=None, hidden=False): super(ToolOutputBase, self).__init__() self.name = name self.label = label self.filters = filters or [] self.hidden = hidden self.collection = False
[docs] def to_dict(self, view='collection', value_mapper=None, app=None): return super(ToolOutputBase, self).to_dict(view=view, value_mapper=value_mapper)
[docs]class ToolOutput(ToolOutputBase): """ Represents an output datasets produced by a tool. For backward compatibility this behaves as if it were the tuple:: (format, metadata_source, parent) """ dict_collection_visible_keys = ['name', 'format', 'label', 'hidden']
[docs] def __init__(self, name, format=None, format_source=None, metadata_source=None, parent=None, label=None, filters=None, actions=None, hidden=False, implicit=False): super(ToolOutput, self).__init__(name, label=label, filters=filters, hidden=hidden) self.format = format self.format_source = format_source self.metadata_source = metadata_source self.parent = parent self.actions = actions # Initialize default values self.change_format = [] self.implicit = implicit self.from_work_dir = None
# Tuple emulation def __len__(self): return 3 def __getitem__(self, index): if index == 0: return self.format elif index == 1: return self.metadata_source elif index == 2: return self.parent else: raise IndexError(index) def __iter__(self): return iter((self.format, self.metadata_source, self.parent))
[docs] def to_dict(self, view='collection', value_mapper=None, app=None): as_dict = super(ToolOutput, self).to_dict(view=view, value_mapper=value_mapper, app=app) format = self.format if format and format != "input" and app: edam_format = app.datatypes_registry.edam_formats.get(self.format) as_dict["edam_format"] = edam_format edam_data = app.datatypes_registry.edam_data.get(self.format) as_dict["edam_data"] = edam_data return as_dict
[docs]class ToolOutputCollection(ToolOutputBase): """ Represents a HistoryDatasetCollectionAssociation of output datasets produced by a tool. <outputs> <collection type="list" label="${tool.name} on ${on_string} fasta"> <discover_datasets pattern="__name__" ext="fasta" visible="True" directory="outputFiles" /> </collection> <collection type="paired" label="${tool.name} on ${on_string} paired reads"> <data name="forward" format="fastqsanger" /> <data name="reverse" format="fastqsanger"/> </collection> <outputs> """ dict_collection_visible_keys = ['name', 'default_format', 'label', 'hidden', 'inherit_format', 'inherit_metadata']
[docs] def __init__( self, name, structure, label=None, filters=None, hidden=False, default_format="data", default_format_source=None, default_metadata_source=None, inherit_format=False, inherit_metadata=False ): super(ToolOutputCollection, self).__init__(name, label=label, filters=filters, hidden=hidden) self.collection = True self.default_format = default_format self.structure = structure self.outputs = odict() self.inherit_format = inherit_format self.inherit_metadata = inherit_metadata self.metadata_source = default_metadata_source self.format_source = default_format_source self.change_format = [] # TODO
[docs] def known_outputs(self, inputs, type_registry): if self.dynamic_structure: return [] # This line is probably not right - should verify structured_like # or have outputs and all outputs have name. if len(self.outputs) > 1: output_parts = [ToolOutputCollectionPart(self, k, v) for k, v in self.outputs.items()] else: collection_prototype = self.structure.collection_prototype(inputs, type_registry) def prototype_dataset_element_to_output(element, parent_ids=[]): name = element.element_identifier format = self.default_format if self.inherit_format: format = element.dataset_instance.ext output = ToolOutput( name, format=format, format_source=self.format_source, metadata_source=self.metadata_source, implicit=True, ) if self.inherit_metadata: output.metadata_source = element.dataset_instance return ToolOutputCollectionPart( self, element.element_identifier, output, parent_ids=parent_ids, ) def prototype_collection_to_output(collection_prototype, parent_ids=[]): output_parts = [] for element in collection_prototype.elements: element_parts = [] if not element.is_collection: element_parts.append(prototype_dataset_element_to_output(element, parent_ids)) else: new_parent_ids = parent_ids[:] + [element.element_identifier] element_parts.extend(prototype_collection_to_output(element.element_object, new_parent_ids)) output_parts.extend(element_parts) return output_parts output_parts = prototype_collection_to_output(collection_prototype) return output_parts
@property def dynamic_structure(self): return self.structure.dynamic @property def dataset_collector_descriptions(self): if not self.dynamic_structure: raise Exception("dataset_collector_descriptions called for output collection with static structure") return self.structure.dataset_collector_descriptions
[docs]class ToolOutputCollectionStructure(object):
[docs] def __init__( self, collection_type, collection_type_source=None, collection_type_from_rules=None, structured_like=None, dataset_collector_descriptions=None, ): self.collection_type = collection_type self.collection_type_source = collection_type_source self.collection_type_from_rules = collection_type_from_rules self.structured_like = structured_like self.dataset_collector_descriptions = dataset_collector_descriptions if collection_type and collection_type_source: raise ValueError("Cannot set both type and type_source on collection output.") if collection_type is None and structured_like is None and dataset_collector_descriptions is None and collection_type_source is None and collection_type_from_rules is None: raise ValueError("Output collection types must specify source of collection type information (e.g. structured_like or type_source).") if dataset_collector_descriptions and (structured_like or collection_type_from_rules): raise ValueError("Cannot specify dynamic structure (discovered_datasets) and collection type attributes structured_like or collection_type_from_rules.") self.dynamic = dataset_collector_descriptions is not None
[docs] def collection_prototype(self, inputs, type_registry): # either must have specified structured_like or something worse if self.structured_like: collection_prototype = inputs[self.structured_like].collection else: collection_type = self.collection_type assert collection_type collection_prototype = type_registry.prototype(collection_type) collection_prototype.collection_type = collection_type return collection_prototype
[docs]class ToolOutputCollectionPart(object):
[docs] def __init__(self, output_collection_def, element_identifier, output_def, parent_ids=[]): self.output_collection_def = output_collection_def self.element_identifier = element_identifier self.output_def = output_def self.parent_ids = parent_ids
@property def effective_output_name(self): name = self.output_collection_def.name part_name = self.element_identifier effective_output_name = "%s|__part__|%s" % (name, part_name) return effective_output_name
[docs] @staticmethod def is_named_collection_part_name(name): return "|__part__|" in name
[docs] @staticmethod def split_output_name(name): assert ToolOutputCollectionPart.is_named_collection_part_name(name) return name.split("|__part__|")