Warning
This document is for an old release of Galaxy. You can alternatively view this page in the latest release if it exists or view the top of the latest release's documentation.
Source code for galaxy.tools.parameters.dataset_matcher
from logging import getLogger
import galaxy.model
log = getLogger(__name__)
[docs]def set_dataset_matcher_factory(trans, tool):
trans.dataset_matcher_factory = DatasetMatcherFactory(trans, tool)
[docs]def get_dataset_matcher_factory(trans):
dataset_matcher_factory = getattr(trans, "dataset_matcher_factory", None)
return dataset_matcher_factory or DatasetMatcherFactory(trans)
class DatasetMatcherFactory:
""""""
def __init__(self, trans, tool=None):
self._trans = trans
self._tool = tool
self._data_inputs = []
self._matches_format_cache = {}
if tool:
valid_input_states = tool.valid_input_states
else:
valid_input_states = galaxy.model.Dataset.valid_input_states
self.valid_input_states = valid_input_states
can_process_summary = False
if tool is not None:
for input in tool.inputs.values():
self._collect_data_inputs(input)
require_public = self._tool and self._tool.tool_type == "data_destination"
if not require_public and self._data_inputs:
can_process_summary = True
for data_input in self._data_inputs:
if data_input.options:
can_process_summary = False
break
self._can_process_summary = can_process_summary
def matches_any_format(self, hda_extension, formats):
for format in formats:
if self.matches_format(hda_extension, format):
return True
return False
def matches_format(self, hda_extension, format):
# cache datatype checking combinations for fast recall
if hda_extension not in self._matches_format_cache:
self._matches_format_cache[hda_extension] = {}
formats = self._matches_format_cache[hda_extension]
if format not in formats:
datatype = galaxy.model.datatype_for_extension(
hda_extension, datatypes_registry=self._trans.app.datatypes_registry
)
formats[format] = datatype.matches_any([format])
return formats[format]
def _collect_data_inputs(self, input):
type_name = input.type
if type_name == "repeat" or type_name == "upload_dataset" or type_name == "section":
for child_input in input.inputs.values():
self._collect_data_inputs(child_input)
elif type_name == "conditional":
for case in input.cases:
for child_input in case.inputs.values():
self._collect_data_inputs(child_input)
elif type_name == "data" or type_name == "data_collection":
self._data_inputs.append(input)
def dataset_matcher(self, param, other_values):
return DatasetMatcher(self, self._trans, param, other_values)
def dataset_collection_matcher(self, dataset_matcher):
if self._can_process_summary:
return SummaryDatasetCollectionMatcher(self, self._trans, dataset_matcher)
else:
return DatasetCollectionMatcher(self._trans, dataset_matcher)
class DatasetMatcher:
"""Utility class to aid DataToolParameter and similar classes in reasoning
about what HDAs could match or are selected for a parameter and value.
Goal here is to both encapsulate and reuse logic related to filtering,
datatype matching, hiding errored dataset, finding implicit conversions,
and permission handling.
"""
def __init__(self, dataset_matcher_factory, trans, param, other_values):
self.dataset_matcher_factory = dataset_matcher_factory
self.trans = trans
self.param = param
self.tool = param.tool
filter_values = set()
if param.options and other_values:
try:
for v in param.options.get_options(trans, other_values):
filter_values.add(v[0])
except IndexError:
pass # no valid options
self.filter_values = filter_values
def valid_hda_match(self, hda, check_implicit_conversions=True):
"""Return False if this parameter can not be matched to the supplied
HDA, otherwise return a description of the match (either a
HdaDirectMatch describing a direct match or a HdaImplicitMatch
describing an implicit conversion.)
"""
rval = False
formats = self.param.formats
direct_match, target_ext, converted_dataset = hda.find_conversion_destination(formats)
if direct_match:
rval = HdaDirectMatch(hda)
else:
if not check_implicit_conversions:
return False
if target_ext:
original_hda = hda
if converted_dataset:
hda = converted_dataset
rval = HdaImplicitMatch(hda, target_ext, original_hda)
else:
return False
if self.filter(hda):
return False
return rval
def hda_match(self, hda, check_implicit_conversions=True, ensure_visible=True):
"""If HDA is accessible, return information about whether it could
match this parameter and if so how. See valid_hda_match for more
information.
"""
dataset = hda.dataset
valid_state = dataset.state in self.dataset_matcher_factory.valid_input_states
if valid_state and (not ensure_visible or hda.visible):
# If we are sending data to an external application, then we need to make sure there are no roles
# associated with the dataset that restrict its access from "public".
require_public = self.tool and self.tool.tool_type == "data_destination"
if require_public and not self.trans.app.security_agent.dataset_is_public(dataset):
return False
return self.valid_hda_match(hda, check_implicit_conversions=check_implicit_conversions)
def filter(self, hda):
"""Filter out this value based on other values for job (if
applicable).
"""
param = self.param
return param.options and param.get_options_filter_attribute(hda) not in self.filter_values
class HdaDirectMatch:
"""Supplied HDA was a valid option directly (did not need to find implicit
conversion).
"""
def __init__(self, hda):
self.hda = hda
@property
def implicit_conversion(self):
return False
class HdaImplicitMatch:
"""Supplied HDA was a valid option directly (did not need to find implicit
conversion).
"""
def __init__(self, hda, target_ext, original_hda):
self.original_hda = original_hda
self.hda = hda
self.target_ext = target_ext
@property
def implicit_conversion(self):
return True
class HdcaDirectMatch:
implicit_conversion = False
def __init__(self):
pass
class HdcaImplicitMatch:
implicit_conversion = True
def __init__(self):
pass
class SummaryDatasetCollectionMatcher:
def __init__(self, dataset_matcher_factory, trans, dataset_matcher):
self.dataset_matcher_factory = dataset_matcher_factory
self._trans = trans
self.dataset_matcher = dataset_matcher
def hdca_match(self, history_dataset_collection_association):
dataset_collection = history_dataset_collection_association.collection
if not dataset_collection.populated_optimized:
return False
(states, extensions) = dataset_collection.dataset_states_and_extensions_summary
for state in states:
if state not in self.dataset_matcher_factory.valid_input_states:
return False
formats = self.dataset_matcher.param.formats
uses_implicit_conversion = False
for extension in extensions:
datatypes_registry = self._trans.app.datatypes_registry
direct_match, converted_ext, _ = datatypes_registry.find_conversion_destination_for_dataset_by_extensions(
extension, formats
)
if direct_match:
continue
if not converted_ext:
return False
else:
uses_implicit_conversion = True
return HdcaImplicitMatch() if uses_implicit_conversion else HdcaDirectMatch()
class DatasetCollectionMatcher:
def __init__(self, trans, dataset_matcher):
self.dataset_matcher = dataset_matcher
self._trans = trans
def __valid_element(self, element):
# Simplify things for now and assume these are hdas and not implicit
# converts. One could imagine handling both of those cases down the
# road.
if element.ldda:
return False
child_collection = element.child_collection
if child_collection:
return self.dataset_collection_match(child_collection)
hda = element.hda
if not hda:
return False
hda_match = self.dataset_matcher.hda_match(hda, ensure_visible=False)
return hda_match
def hdca_match(self, history_dataset_collection_association):
dataset_collection = history_dataset_collection_association.collection
return self.dataset_collection_match(dataset_collection)
def dataset_collection_match(self, dataset_collection):
# If dataset collection not yet populated, cannot determine if it
# would be a valid match for this parameter.
if not dataset_collection.populated:
return False
valid = True
uses_implicit_conversion = False
for element in dataset_collection.elements:
match_element = self.__valid_element(element)
if not match_element:
valid = False
break
elif match_element.implicit_conversion:
uses_implicit_conversion = True
return valid and (HdcaImplicitMatch() if uses_implicit_conversion else HdcaDirectMatch())
__all__ = ("get_dataset_matcher_factory", "set_dataset_matcher_factory", "unset_dataset_matcher_factory")