Warning

This document is for an in-development version of Galaxy. You can alternatively view this page in the latest release if it exists or view the top of the latest release's documentation.

Source code for galaxy_ext.metadata.set_metadata

"""
Execute an external process to set_meta() on a provided list of pickled datasets.

This was formerly scripts/set_metadata.py and expects these arguments:

    %prog datatypes_conf.xml job_metadata_file metadata_in,metadata_kwds,metadata_out,metadata_results_code,output_filename_override,metadata_override... max_metadata_value_size

Galaxy should be importable on sys.path and output_filename_override should be
set to the path of the dataset on which metadata is being set
(output_filename_override could previously be left empty and the path would be
constructed automatically).
"""
import json
import logging
import os
import sys

# insert *this* galaxy before all others on sys.path
sys.path.insert(1, os.path.abspath(os.path.join(os.path.dirname(__file__), os.pardir, os.pardir)))

from six.moves import cPickle
from sqlalchemy.orm import clear_mappers

import galaxy.model.mapping  # need to load this before we unpickle, in order to setup properties assigned by the mappers
from galaxy.model.custom_types import total_size
from galaxy.util import (
    stringify_dictionary_keys,
    unicodify,
)
from ._provided_metadata import parse_tool_provided_metadata

# ensure supported version
assert sys.version_info[:2] >= (2, 7), 'Python version must be at least 2.7, this is: %s' % sys.version

logging.basicConfig()
log = logging.getLogger(__name__)

galaxy.model.Job()  # this looks REAL stupid, but it is REQUIRED in order for SA to insert parameters into the classes defined by the mappers --> it appears that instantiating ANY mapper'ed class would suffice here


[docs]def set_meta_with_tool_provided(dataset_instance, file_dict, set_meta_kwds, datatypes_registry, max_metadata_value_size): # This method is somewhat odd, in that we set the metadata attributes from tool, # then call set_meta, then set metadata attributes from tool again. # This is intentional due to interplay of overwrite kwd, the fact that some metadata # parameters may rely on the values of others, and that we are accepting the # values provided by the tool as Truth. extension = dataset_instance.extension if extension == "_sniff_": try: from galaxy.datatypes import sniff extension = sniff.handle_uploaded_dataset_file(dataset_instance.dataset.external_filename, datatypes_registry) # We need to both set the extension so it is available to set_meta # and record it in the metadata so it can be reloaded on the server # side and the model updated (see MetadataCollection.{from,to}_JSON_dict) dataset_instance.extension = extension # Set special metadata property that will reload this on server side. setattr(dataset_instance.metadata, "__extension__", extension) except Exception: log.exception("Problem sniffing datatype.") for metadata_name, metadata_value in file_dict.get('metadata', {}).items(): setattr(dataset_instance.metadata, metadata_name, metadata_value) dataset_instance.datatype.set_meta(dataset_instance, **set_meta_kwds) for metadata_name, metadata_value in file_dict.get('metadata', {}).items(): setattr(dataset_instance.metadata, metadata_name, metadata_value) if max_metadata_value_size: for k, v in list(dataset_instance.metadata.items()): if total_size(v) > max_metadata_value_size: log.info("Key %s too large for metadata, discarding" % k) dataset_instance.metadata.remove_key(k)
[docs]def set_metadata(): if len(sys.argv) == 1: set_metadata_portable() else: set_metadata_legacy()
[docs]def set_metadata_portable(): import galaxy.model tool_job_working_directory = os.path.abspath(os.getcwd()) galaxy.model.metadata.MetadataTempFile.tmp_dir = os.path.join(tool_job_working_directory, "metadata") metadata_params_path = os.path.join("metadata", "params.json") try: with open(metadata_params_path, "r") as f: metadata_params = json.load(f) except IOError: raise Exception("Failed to find metadata/params.json from cwd [%s]" % tool_job_working_directory) datatypes_config = metadata_params["datatypes_config"] job_metadata = metadata_params["job_metadata"] max_metadata_value_size = metadata_params.get("max_metadata_value_size") or 0 outputs = metadata_params["outputs"] datatypes_registry = validate_and_load_datatypes_config(datatypes_config) tool_provided_metadata = load_job_metadata(job_metadata) def set_meta(new_dataset_instance, file_dict): set_meta_with_tool_provided(new_dataset_instance, file_dict, set_meta_kwds, datatypes_registry, max_metadata_value_size) for output_name, output_dict in outputs.items(): filename_in = os.path.join("metadata/metadata_in_%s" % output_name) filename_kwds = os.path.join("metadata/metadata_kwds_%s" % output_name) filename_out = os.path.join("metadata/metadata_out_%s" % output_name) filename_results_code = os.path.join("metadata/metadata_results_%s" % output_name) override_metadata = os.path.join("metadata/metadata_override_%s" % output_name) dataset_filename_override = output_dict["filename_override"] # Same block as below... set_meta_kwds = stringify_dictionary_keys(json.load(open(filename_kwds))) # load kwds; need to ensure our keywords are not unicode try: dataset = cPickle.load(open(filename_in, 'rb')) # load DatasetInstance dataset.dataset.external_filename = dataset_filename_override store_by = metadata_params.get("object_store_store_by", "id") extra_files_dir_name = "dataset_%s_files" % getattr(dataset.dataset, store_by) files_path = os.path.abspath(os.path.join(tool_job_working_directory, extra_files_dir_name)) dataset.dataset.external_extra_files_path = files_path file_dict = tool_provided_metadata.get_dataset_meta(output_name, dataset.dataset.id) if 'ext' in file_dict: dataset.extension = file_dict['ext'] # Metadata FileParameter types may not be writable on a cluster node, and are therefore temporarily substituted with MetadataTempFiles override_metadata = json.load(open(override_metadata)) for metadata_name, metadata_file_override in override_metadata: if galaxy.datatypes.metadata.MetadataTempFile.is_JSONified_value(metadata_file_override): metadata_file_override = galaxy.datatypes.metadata.MetadataTempFile.from_JSON(metadata_file_override) setattr(dataset.metadata, metadata_name, metadata_file_override) set_meta(dataset, file_dict) dataset.metadata.to_JSON_dict(filename_out) # write out results of set_meta json.dump((True, 'Metadata has been set successfully'), open(filename_results_code, 'wt+')) # setting metadata has succeeded except Exception as e: json.dump((False, unicodify(e)), open(filename_results_code, 'wt+')) # setting metadata has failed somehow write_job_metadata(tool_job_working_directory, job_metadata, set_meta, tool_provided_metadata)
[docs]def set_metadata_legacy(): import galaxy.model galaxy.model.metadata.MetadataTempFile.tmp_dir = tool_job_working_directory = os.path.abspath(os.getcwd()) # This is ugly, but to transition from existing jobs without this parameter # to ones with, smoothly, it has to be the last optional parameter and we # have to sniff it. try: max_metadata_value_size = int(sys.argv[-1]) sys.argv = sys.argv[:-1] except ValueError: max_metadata_value_size = 0 # max_metadata_value_size is unspecified and should be 0 # Set up datatypes registry datatypes_config = sys.argv.pop(1) datatypes_registry = validate_and_load_datatypes_config(datatypes_config) job_metadata = sys.argv.pop(1) tool_provided_metadata = load_job_metadata(job_metadata) def set_meta(new_dataset_instance, file_dict): set_meta_with_tool_provided(new_dataset_instance, file_dict, set_meta_kwds, datatypes_registry, max_metadata_value_size) for filenames in sys.argv[1:]: fields = filenames.split(',') filename_in = fields.pop(0) filename_kwds = fields.pop(0) filename_out = fields.pop(0) filename_results_code = fields.pop(0) dataset_filename_override = fields.pop(0) override_metadata = fields.pop(0) set_meta_kwds = stringify_dictionary_keys(json.load(open(filename_kwds))) # load kwds; need to ensure our keywords are not unicode try: dataset = cPickle.load(open(filename_in, 'rb')) # load DatasetInstance dataset.dataset.external_filename = dataset_filename_override files_path = os.path.abspath(os.path.join(tool_job_working_directory, "dataset_%s_files" % (dataset.dataset.id))) dataset.dataset.external_extra_files_path = files_path file_dict = tool_provided_metadata.get_dataset_meta(None, dataset.dataset.id) if 'ext' in file_dict: dataset.extension = file_dict['ext'] # Metadata FileParameter types may not be writable on a cluster node, and are therefore temporarily substituted with MetadataTempFiles override_metadata = json.load(open(override_metadata)) for metadata_name, metadata_file_override in override_metadata: if galaxy.datatypes.metadata.MetadataTempFile.is_JSONified_value(metadata_file_override): metadata_file_override = galaxy.datatypes.metadata.MetadataTempFile.from_JSON(metadata_file_override) setattr(dataset.metadata, metadata_name, metadata_file_override) set_meta(dataset, file_dict) dataset.metadata.to_JSON_dict(filename_out) # write out results of set_meta json.dump((True, 'Metadata has been set successfully'), open(filename_results_code, 'wt+')) # setting metadata has succeeded except Exception as e: json.dump((False, unicodify(e)), open(filename_results_code, 'wt+')) # setting metadata has failed somehow write_job_metadata(tool_job_working_directory, job_metadata, set_meta, tool_provided_metadata)
[docs]def validate_and_load_datatypes_config(datatypes_config): galaxy_root = os.path.abspath(os.path.join(os.path.dirname(__file__), os.pardir, os.pardir, os.pardir)) if not os.path.exists(datatypes_config): # Hack for Pulsar on usegalaxy.org, drop ASAP. datatypes_config = "configs/registry.xml" if not os.path.exists(datatypes_config): print("Metadata setting failed because registry.xml [%s] could not be found. You may retry setting metadata." % datatypes_config) sys.exit(1) import galaxy.datatypes.registry datatypes_registry = galaxy.datatypes.registry.Registry() datatypes_registry.load_datatypes(root_dir=galaxy_root, config=datatypes_config) galaxy.model.set_datatypes_registry(datatypes_registry) return datatypes_registry
[docs]def load_job_metadata(job_metadata): return parse_tool_provided_metadata(job_metadata)
[docs]def write_job_metadata(tool_job_working_directory, job_metadata, set_meta, tool_provided_metadata): for i, file_dict in enumerate(tool_provided_metadata.get_new_datasets_for_metadata_collection(), start=1): filename = file_dict["filename"] new_dataset_filename = os.path.join(tool_job_working_directory, "working", filename) new_dataset = galaxy.model.Dataset(id=-i, external_filename=new_dataset_filename) extra_files = file_dict.get('extra_files', None) if extra_files is not None: new_dataset._extra_files_path = os.path.join(tool_job_working_directory, "working", extra_files) new_dataset.state = new_dataset.states.OK new_dataset_instance = galaxy.model.HistoryDatasetAssociation(id=-i, dataset=new_dataset, extension=file_dict.get('ext', 'data')) set_meta(new_dataset_instance, file_dict) file_dict['metadata'] = json.loads(new_dataset_instance.metadata.to_JSON_dict()) # storing metadata in external form, need to turn back into dict, then later jsonify tool_provided_metadata.rewrite() clear_mappers()