Warning

This document is for an in-development version of Galaxy. You can alternatively view this page in the latest release if it exists or view the top of the latest release's documentation.

Source code for galaxy.tools.parameters.output_collect

""" Code allowing tools to define extra files associated with an output datset.
"""
import logging
import operator
import os
import re

import galaxy.model
from galaxy.model.dataset_collections import builder
from galaxy.model.dataset_collections.structure import UninitializedTree
from galaxy.model.dataset_collections.type_description import COLLECTION_TYPE_DESCRIPTION_FACTORY
from galaxy.model.store.discover import (
    discover_target_directory,
    DiscoveredFile,
    JsonCollectedDatasetMatch,
    ModelPersistenceContext,
    persist_elements_to_folder,
    persist_elements_to_hdca,
    persist_hdas,
    RegexCollectedDatasetMatch,
    UNSET,
)
from galaxy.tools.parser.output_collection_def import (
    DEFAULT_DATASET_COLLECTOR_DESCRIPTION,
    INPUT_DBKEY_TOKEN,
    ToolProvidedMetadataDatasetCollection,
)
from galaxy.util import (
    odict
)

DATASET_ID_TOKEN = "DATASET_ID"

log = logging.getLogger(__name__)


# PermissionProvider and MetadataSourceProvider are abstractions over input data used to
# collect and produce dynamic outputs.
[docs]class PermissionProvider(object):
[docs] def __init__(self, inp_data, security_agent, job): self._job = job self._security_agent = security_agent self._inp_data = inp_data self._user = job.user self._permissions = None
@property def permissions(self): if self._permissions is None: inp_data = self._inp_data existing_datasets = [inp for inp in inp_data.values() if inp] if existing_datasets: permissions = self._security_agent.guess_derived_permissions_for_datasets(existing_datasets) else: # No valid inputs, we will use history defaults permissions = self._security_agent.history_get_default_permissions(self._job.history) self._permissions = permissions return self._permissions
[docs] def set_default_hda_permissions(self, primary_data): permissions = self.permissions if permissions is not UNSET: self._security_agent.set_all_dataset_permissions(primary_data.dataset, permissions, new=True, flush=False)
[docs] def copy_dataset_permissions(self, init_from, primary_data): self._security_agent.copy_dataset_permissions(init_from.dataset, primary_data.dataset)
[docs]class MetadataSourceProvider(object):
[docs] def __init__(self, inp_data): self._inp_data = inp_data
[docs] def get_metadata_source(self, input_name): return self._inp_data[input_name]
[docs]def collect_dynamic_outputs( job_context, output_collections, ): tool = job_context.tool app = tool.app # unmapped outputs do not correspond to explicit outputs of the tool, they were inferred entirely # from the tool provided metadata (e.g. galaxy.json). for unnamed_output_dict in job_context.tool_provided_metadata.get_unnamed_outputs(): assert "destination" in unnamed_output_dict assert "elements" in unnamed_output_dict destination = unnamed_output_dict["destination"] elements = unnamed_output_dict["elements"] assert "type" in destination destination_type = destination["type"] assert destination_type in ["library_folder", "hdca", "hdas"] trans = job_context.work_context # three destination types we need to handle here - "library_folder" (place discovered files in a library folder), # "hdca" (place discovered files in a history dataset collection), and "hdas" (place discovered files in a history # as stand-alone datasets). if destination_type == "library_folder": # populate a library folder (needs to be already have been created) library_folder_manager = app.library_folder_manager library_folder = library_folder_manager.get(trans, app.security.decode_id(destination.get("library_folder_id"))) persist_elements_to_folder(job_context, elements, library_folder) elif destination_type == "hdca": # create or populate a dataset collection in the history assert "collection_type" in unnamed_output_dict object_id = destination.get("object_id") if object_id: hdca = job_context.sa_session.query(galaxy.model.HistoryDatasetCollectionAssociation).get(int(object_id)) else: history = job_context.job.history name = unnamed_output_dict.get("name", "unnamed collection") collection_type = unnamed_output_dict["collection_type"] collection_type_description = COLLECTION_TYPE_DESCRIPTION_FACTORY.for_collection_type(collection_type) structure = UninitializedTree(collection_type_description) hdca = app.dataset_collections_service.precreate_dataset_collection_instance( trans, history, name, structure=structure ) persist_elements_to_hdca(job_context, elements, hdca, collector=DEFAULT_DATASET_COLLECTOR) elif destination_type == "hdas": persist_hdas(elements, job_context) for name, has_collection in output_collections.items(): if name not in tool.output_collections: continue output_collection_def = tool.output_collections[name] if not output_collection_def.dynamic_structure: continue # Could be HDCA for normal jobs or a DC for mapping # jobs. if hasattr(has_collection, "collection"): collection = has_collection.collection else: collection = has_collection # We are adding dynamic collections, which may be precreated, but their actually state is still new! collection.populated_state = collection.populated_states.NEW try: collection_builder = builder.BoundCollectionBuilder(collection) dataset_collectors = [dataset_collector(description) for description in output_collection_def.dataset_collector_descriptions] output_name = output_collection_def.name filenames = job_context.find_files(output_name, collection, dataset_collectors) job_context.populate_collection_elements( collection, collection_builder, filenames, name=output_collection_def.name, metadata_source_name=output_collection_def.metadata_source, ) collection_builder.populate() except Exception: log.exception("Problem gathering output collection.") collection.handle_population_failed("Problem building datasets for collection.")
[docs]class JobContext(ModelPersistenceContext):
[docs] def __init__(self, tool, tool_provided_metadata, job, job_working_directory, permission_provider, metadata_source_provider, input_dbkey, object_store): self.tool = tool self.metadata_source_provider = metadata_source_provider self.permission_provider = permission_provider self.input_dbkey = input_dbkey self.app = tool.app self.sa_session = tool.sa_session self.job = job self.job_working_directory = job_working_directory self.tool_provided_metadata = tool_provided_metadata self.object_store = object_store
@property def work_context(self): from galaxy.work.context import WorkRequestContext return WorkRequestContext(self.app, user=self.user) @property def user(self): if self.job: user = self.job.user else: user = None return user @property def tag_handler(self): return self.app.tag_handler
[docs] def find_files(self, output_name, collection, dataset_collectors): filenames = odict.odict() for discovered_file in discover_files(output_name, self.tool_provided_metadata, dataset_collectors, self.job_working_directory, collection): filenames[discovered_file.path] = discovered_file return filenames
[docs] def persist_object(self, obj): self.sa_session.add(obj)
[docs] def flush(self): self.sa_session.flush()
[docs] def create_library_folder(self, parent_folder, name, description): assert parent_folder.id library_folder_manager = self.app.library_folder_manager nested_folder = library_folder_manager.create(self.work_context, parent_folder.id, name, description) return nested_folder
[docs] def add_output_dataset_association(self, name, dataset): assoc = galaxy.model.JobToOutputDatasetAssociation(name, dataset) assoc.job = self.job self.sa_session.add(assoc)
[docs] def add_library_dataset_to_folder(self, library_folder, ld): trans = self.work_context ldda = ld.library_dataset_dataset_association trans.sa_session.add(ldda) trans = self.work_context trans.app.security_agent.copy_library_permissions(trans, library_folder, ld) trans.sa_session.add(ld) trans.sa_session.flush() # Permissions must be the same on the LibraryDatasetDatasetAssociation and the associated LibraryDataset trans.app.security_agent.copy_library_permissions(trans, ld, ldda) # Copy the current user's DefaultUserPermissions to the new LibraryDatasetDatasetAssociation.dataset trans.app.security_agent.set_all_dataset_permissions(ldda.dataset, trans.app.security_agent.user_get_default_permissions(trans.user)) library_folder.add_library_dataset(ld, genome_build=ldda.dbkey) trans.sa_session.add(library_folder) trans.sa_session.flush() trans.sa_session.add(ld) trans.sa_session.flush()
[docs] def add_datasets_to_history(self, datasets, for_output_dataset=None): sa_session = self.sa_session self.job.history.add_datasets(sa_session, datasets) if for_output_dataset is not None: # Need to update all associated output hdas, i.e. history was # shared with job running for copied_dataset in for_output_dataset.dataset.history_associations: if copied_dataset == for_output_dataset: continue for dataset in datasets: new_data = dataset.copy() copied_dataset.history.add_dataset(new_data) sa_session.add(new_data) sa_session.flush()
[docs]def collect_primary_datasets(job_context, output, input_ext): tool = job_context.tool job_working_directory = job_context.job_working_directory sa_session = job_context.sa_session # Loop through output file names, looking for generated primary # datasets in form specified by discover dataset patterns or in tool provided metadata. primary_output_assigned = False new_outdata_name = None primary_datasets = {} for output_index, (name, outdata) in enumerate(output.items()): dataset_collectors = [DEFAULT_DATASET_COLLECTOR] if name in tool.outputs: dataset_collectors = [dataset_collector(description) for description in tool.outputs[name].dataset_collector_descriptions] filenames = odict.odict() for discovered_file in discover_files(name, job_context.tool_provided_metadata, dataset_collectors, job_working_directory, outdata): filenames[discovered_file.path] = discovered_file for filename_index, (filename, discovered_file) in enumerate(filenames.items()): extra_file_collector = discovered_file.collector fields_match = discovered_file.match if not fields_match: # Before I guess pop() would just have thrown an IndexError raise Exception("Problem parsing metadata fields for file %s" % filename) designation = fields_match.designation if filename_index == 0 and extra_file_collector.assign_primary_output and output_index == 0: new_outdata_name = fields_match.name or "%s (%s)" % (outdata.name, designation) # Move data from temp location to dataset location job_context.object_store.update_from_file(outdata.dataset, file_name=filename, create=True) primary_output_assigned = True continue if name not in primary_datasets: primary_datasets[name] = odict.odict() visible = fields_match.visible ext = fields_match.ext if ext == "input": ext = input_ext dbkey = fields_match.dbkey if dbkey == INPUT_DBKEY_TOKEN: dbkey = job_context.input_dbkey # Create new primary dataset new_primary_name = fields_match.name or "%s (%s)" % (outdata.name, designation) info = outdata.info # TODO: should be able to disambiguate files in different directories... new_primary_filename = os.path.split(filename)[-1] new_primary_datasets_attributes = job_context.tool_provided_metadata.get_new_dataset_meta_by_basename(name, new_primary_filename) primary_data = job_context.create_dataset( ext, designation, visible, dbkey, new_primary_name, filename, info=info, init_from=outdata, dataset_attributes=new_primary_datasets_attributes, ) # Associate new dataset with job job_context.add_output_dataset_association('__new_primary_file_%s|%s__' % (name, designation), primary_data) if new_primary_datasets_attributes: extra_files_path = new_primary_datasets_attributes.get('extra_files', None) if extra_files_path: extra_files_path_joined = os.path.join(job_working_directory, extra_files_path) primary_data.dataset.create_extra_files_path() for root, dirs, files in os.walk(extra_files_path_joined): extra_dir = os.path.join(primary_data.extra_files_path, root.replace(extra_files_path_joined, '', 1).lstrip(os.path.sep)) extra_dir = os.path.normpath(extra_dir) for f in files: job_context.object_store.update_from_file( primary_data.dataset, extra_dir=extra_dir, alt_name=f, file_name=os.path.join(root, f), create=True, preserve_symlinks=True ) job_context.add_datasets_to_history([primary_data], for_output_dataset=outdata) # Add dataset to return dict primary_datasets[name][designation] = primary_data if primary_output_assigned: outdata.name = new_outdata_name outdata.init_meta() outdata.set_meta() outdata.set_peek() sa_session.add(outdata) sa_session.flush() return primary_datasets
[docs]def discover_files(output_name, tool_provided_metadata, extra_file_collectors, job_working_directory, matchable): extra_file_collectors = extra_file_collectors if extra_file_collectors and extra_file_collectors[0].discover_via == "tool_provided_metadata": # just load entries from tool provided metadata... assert len(extra_file_collectors) == 1 extra_file_collector = extra_file_collectors[0] target_directory = discover_target_directory(extra_file_collector.directory, job_working_directory) for dataset in tool_provided_metadata.get_new_datasets(output_name): filename = dataset["filename"] path = os.path.join(target_directory, filename) yield DiscoveredFile(path, extra_file_collector, JsonCollectedDatasetMatch(dataset, extra_file_collector, filename, path=path)) else: for (match, collector) in walk_over_file_collectors(extra_file_collectors, job_working_directory, matchable): yield DiscoveredFile(match.path, collector, match)
[docs]def walk_over_file_collectors(extra_file_collectors, job_working_directory, matchable): for extra_file_collector in extra_file_collectors: assert extra_file_collector.discover_via == "pattern" for match in walk_over_extra_files(extra_file_collector.directory, extra_file_collector, job_working_directory, matchable): yield match, extra_file_collector
[docs]def walk_over_extra_files(target_dir, extra_file_collector, job_working_directory, matchable): """ Walks through all files in a given directory, and returns all files that match the given collector's match criteria. If the collector has the recurse flag enabled, will also recursively descend into child folders. """ matches = [] directory = discover_target_directory(target_dir, job_working_directory) if os.path.isdir(directory): for filename in os.listdir(directory): path = os.path.join(directory, filename) if os.path.isdir(path) and extra_file_collector.recurse: # The current directory is already validated, so use that as the next job_working_directory when recursing for match in walk_over_extra_files(filename, extra_file_collector, directory, matchable): yield match else: match = extra_file_collector.match(matchable, filename, path=path) if match: matches.append(match) for match in extra_file_collector.sort(matches): yield match
[docs]def dataset_collector(dataset_collection_description): if dataset_collection_description is DEFAULT_DATASET_COLLECTOR_DESCRIPTION: # Use 'is' and 'in' operators, so lets ensure this is # treated like a singleton. return DEFAULT_DATASET_COLLECTOR else: if dataset_collection_description.discover_via == "pattern": return DatasetCollector(dataset_collection_description) else: return ToolMetadataDatasetCollector(dataset_collection_description)
[docs]class ToolMetadataDatasetCollector(object):
[docs] def __init__(self, dataset_collection_description): self.discover_via = dataset_collection_description.discover_via self.default_dbkey = dataset_collection_description.default_dbkey self.default_ext = dataset_collection_description.default_ext self.default_visible = dataset_collection_description.default_visible self.directory = dataset_collection_description.directory self.assign_primary_output = dataset_collection_description.assign_primary_output
[docs]class DatasetCollector(object):
[docs] def __init__(self, dataset_collection_description): self.discover_via = dataset_collection_description.discover_via # dataset_collection_description is an abstract description # built from the tool parsing module - see galaxy.tools.parser.output_colleciton_def self.sort_key = dataset_collection_description.sort_key self.sort_reverse = dataset_collection_description.sort_reverse self.sort_comp = dataset_collection_description.sort_comp self.pattern = dataset_collection_description.pattern self.default_dbkey = dataset_collection_description.default_dbkey self.default_ext = dataset_collection_description.default_ext self.default_visible = dataset_collection_description.default_visible self.directory = dataset_collection_description.directory self.assign_primary_output = dataset_collection_description.assign_primary_output self.recurse = dataset_collection_description.recurse
def _pattern_for_dataset(self, dataset_instance=None): token_replacement = r'\d+' if dataset_instance: token_replacement = str(dataset_instance.id) return self.pattern.replace(DATASET_ID_TOKEN, token_replacement)
[docs] def match(self, dataset_instance, filename, path=None): pattern = self._pattern_for_dataset(dataset_instance) re_match = re.match(pattern, filename) match_object = None if re_match: match_object = RegexCollectedDatasetMatch(re_match, self, filename, path=path) return match_object
[docs] def sort(self, matches): reverse = self.sort_reverse sort_key = self.sort_key sort_comp = self.sort_comp assert sort_key in ["filename", "dbkey", "name", "designation"] assert sort_comp in ["lexical", "numeric"] key = operator.attrgetter(sort_key) if sort_comp == "numeric": key = _compose(int, key) return sorted(matches, key=key, reverse=reverse)
def _compose(f, g): return lambda x: f(g(x)) DEFAULT_DATASET_COLLECTOR = DatasetCollector(DEFAULT_DATASET_COLLECTOR_DESCRIPTION) DEFAULT_TOOL_PROVIDED_DATASET_COLLECTOR = ToolMetadataDatasetCollector(ToolProvidedMetadataDatasetCollection())