Warning
This document is for an in-development version of Galaxy. You can alternatively view this page in the latest release if it exists or view the top of the latest release's documentation.
Source code for galaxy.datatypes.genetics
"""
rgenetics datatypes
Use at your peril
Ross Lazarus
for the rgenetics and galaxy projects
genome graphs datatypes derived from Interval datatypes
genome graphs datasets have a header row with appropriate columnames
The first column is always the marker - eg columname = rs, first row= rs12345 if the rows are snps
subsequent row values are all numeric ! Will fail if any non numeric (eg '+' or 'NA') values
ross lazarus for rgenetics
august 20 2007
"""
import logging
import os
import re
import sys
from markupsafe import escape
from six.moves.urllib.parse import quote_plus
from galaxy.datatypes import metadata
from galaxy.datatypes.data import Text
from galaxy.datatypes.metadata import MetadataElement
from galaxy.datatypes.sniff import build_sniff_from_prefix
from galaxy.datatypes.tabular import Tabular
from galaxy.datatypes.text import Html
from galaxy.util import (
nice_size,
unicodify,
)
gal_Log = logging.getLogger(__name__)
verbose = False
# https://genome.ucsc.edu/goldenpath/help/hgGenomeHelp.html
VALID_GENOME_GRAPH_MARKERS = re.compile(r'^(chr.*|RH.*|rs.*|SNP_.*|CN.*|A_.*)')
VALID_GENOTYPES_LINE = re.compile(r'^([a-zA-Z0-9]+)(\s([0-9]{2}|[A-Z]{2}|NC|\?\?))+\s*$')
[docs]@build_sniff_from_prefix
class GenomeGraphs(Tabular):
"""
Tab delimited data containing a marker id and any number of numeric values
"""
MetadataElement(name="markerCol", default=1, desc="Marker ID column", param=metadata.ColumnParameter)
MetadataElement(name="columns", default=3, desc="Number of columns", readonly=True)
MetadataElement(name="column_types", default=[], desc="Column types", readonly=True, visible=False)
file_ext = 'gg'
[docs] def __init__(self, **kwd):
"""
Initialize gg datatype, by adding UCSC display apps
"""
Tabular.__init__(self, **kwd)
self.add_display_app('ucsc', 'Genome Graph', 'as_ucsc_display_file', 'ucsc_links')
[docs] def set_meta(self, dataset, **kwd):
Tabular.set_meta(self, dataset, **kwd)
dataset.metadata.markerCol = 1
header = open(dataset.file_name, 'r').readlines()[0].strip().split('\t')
dataset.metadata.columns = len(header)
t = ['numeric' for x in header]
t[0] = 'string'
dataset.metadata.column_types = t
return True
[docs] def as_ucsc_display_file(self, dataset, **kwd):
"""
Returns file
"""
return open(dataset.file_name, 'rb')
[docs] def ucsc_links(self, dataset, type, app, base_url):
"""
from the ever-helpful angie hinrichs angie@soe.ucsc.edu
a genome graphs call looks like this
http://genome.ucsc.edu/cgi-bin/hgGenome?clade=mammal&org=Human&db=hg18&hgGenome_dataSetName=dname
&hgGenome_dataSetDescription=test&hgGenome_formatType=best%20guess&hgGenome_markerType=best%20guess
&hgGenome_columnLabels=best%20guess&hgGenome_maxVal=&hgGenome_labelVals=
&hgGenome_maxGapToFill=25000000&hgGenome_uploadFile=http://galaxy.esphealth.org/datasets/333/display/index
&hgGenome_doSubmitUpload=submit
Galaxy gives this for an interval file
http://genome.ucsc.edu/cgi-bin/hgTracks?db=hg18&position=chr1:1-1000&hgt.customText=
http%3A%2F%2Fgalaxy.esphealth.org%2Fdisplay_as%3Fid%3D339%26display_app%3Ducsc
"""
ret_val = []
if not dataset.dbkey:
dataset.dbkey = 'hg18' # punt!
if dataset.has_data():
for site_name, site_url in app.datatypes_registry.get_legacy_sites_by_build('ucsc', dataset.dbkey):
if site_name in app.datatypes_registry.get_display_sites('ucsc'):
site_url = site_url.replace('/hgTracks?', '/hgGenome?') # for genome graphs
internal_url = "%s" % app.url_for(controller='dataset',
dataset_id=dataset.id,
action='display_at',
filename='ucsc_' + site_name)
display_url = "%s%s/display_as?id=%i&display_app=%s&authz_method=display_at" % (base_url, app.url_for(controller='root'), dataset.id, type)
display_url = quote_plus(display_url)
# was display_url = quote_plus( "%s/display_as?id=%i&display_app=%s" % (base_url, dataset.id, type) )
# redirect_url = quote_plus( "%sdb=%s&position=%s:%s-%s&hgt.customText=%%s" % (site_url, dataset.dbkey, chrom, start, stop) )
sl = ["%sdb=%s" % (site_url, dataset.dbkey), ]
# sl.append("&hgt.customText=%s")
sl.append("&hgGenome_dataSetName=%s&hgGenome_dataSetDescription=%s" % (dataset.name, 'GalaxyGG_data'))
sl.append("&hgGenome_formatType=best guess&hgGenome_markerType=best guess")
sl.append("&hgGenome_columnLabels=first row&hgGenome_maxVal=&hgGenome_labelVals=")
sl.append("&hgGenome_doSubmitUpload=submit")
sl.append("&hgGenome_maxGapToFill=25000000&hgGenome_uploadFile=%s" % display_url)
s = ''.join(sl)
s = quote_plus(s)
redirect_url = s
link = '%s?redirect_url=%s&display_url=%s' % (internal_url, redirect_url, display_url)
ret_val.append((site_name, link))
return ret_val
[docs] def make_html_table(self, dataset, skipchars=[]):
"""
Create HTML table, used for displaying peek
"""
out = ['<table cellspacing="0" cellpadding="3">']
try:
with open(dataset.file_name, 'r') as f:
d = f.readlines()[:5]
if len(d) == 0:
out = "Cannot find anything to parse in %s" % dataset.name
return out
hasheader = 0
try:
['%f' % x for x in d[0][1:]] # first is name - see if starts all numerics
except Exception:
hasheader = 1
# Generate column header
out.append('<tr>')
if hasheader:
for i, name in enumerate(d[0].split()):
out.append('<th>%s.%s</th>' % (i + 1, name))
d.pop(0)
out.append('</tr>')
for row in d:
out.append('<tr>')
out.append(''.join(['<td>%s</td>' % x for x in row.split()]))
out.append('</tr>')
out.append('</table>')
out = "".join(out)
except Exception as exc:
out = "Can't create peek %s" % exc
return out
[docs] def validate(self, dataset):
"""
Validate a gg file - all numeric after header row
"""
errors = list()
with open(dataset.file_name, "r") as infile:
next(infile) # header
for i, row in enumerate(infile):
ll = row.strip().split('\t')[1:] # first is alpha feature identifier
badvals = []
for j, x in enumerate(ll):
try:
x = float(x)
except Exception:
badvals.append('col%d:%s' % (j + 1, x))
if len(badvals) > 0:
errors.append('row %d, %s' % (' '.join(badvals)))
return errors
[docs] def sniff_prefix(self, file_prefix):
"""
Determines whether the file is in gg format
>>> from galaxy.datatypes.sniff import get_test_fname
>>> fname = get_test_fname( 'test_space.txt' )
>>> GenomeGraphs().sniff( fname )
False
>>> fname = get_test_fname( '1.gg' )
>>> GenomeGraphs().sniff( fname )
True
"""
buf = file_prefix.contents_header
rows = [l.split() for l in buf.splitlines()[1:4]] # break on lines and drop header, small sample
if len(rows) < 1:
return False
for row in rows:
if len(row) < 2:
# Must actually have a marker and at least one numeric value
return False
first_val = row[0]
if not VALID_GENOME_GRAPH_MARKERS.match(first_val):
return False
rest_row = row[1:]
try:
[float(x) for x in rest_row] # first col has been removed
except ValueError:
return False
return True
[docs] def get_mime(self):
"""Returns the mime type of the datatype"""
return 'application/vnd.ms-excel'
[docs]class rgTabList(Tabular):
"""
for sampleid and for featureid lists of exclusions or inclusions in the clean tool
featureid subsets on statistical criteria -> specialized display such as gg
"""
file_ext = "rgTList"
[docs] def __init__(self, **kwd):
"""
Initialize featurelistt datatype
"""
Tabular.__init__(self, **kwd)
self.column_names = []
[docs] def display_peek(self, dataset):
"""Returns formated html of peek"""
return self.make_html_table(dataset, column_names=self.column_names)
[docs]class rgSampleList(rgTabList):
"""
for sampleid exclusions or inclusions in the clean tool
output from QC eg excess het, gender error, ibd pair member,eigen outlier,excess mendel errors,...
since they can be uploaded, should be flexible
but they are persistent at least
same infrastructure for expression?
"""
file_ext = "rgSList"
[docs] def __init__(self, **kwd):
"""
Initialize samplelist datatype
"""
rgTabList.__init__(self, **kwd)
self.column_names[0] = 'FID'
self.column_names[1] = 'IID'
# this is what Plink wants as at 2009
[docs]class rgFeatureList(rgTabList):
"""
for featureid lists of exclusions or inclusions in the clean tool
output from QC eg low maf, high missingness, bad hwe in controls, excess mendel errors,...
featureid subsets on statistical criteria -> specialized display such as gg
same infrastructure for expression?
"""
file_ext = "rgFList"
[docs] def __init__(self, **kwd):
"""Initialize featurelist datatype"""
rgTabList.__init__(self, **kwd)
for i, s in enumerate(['#FeatureId', 'Chr', 'Genpos', 'Mappos']):
self.column_names[i] = s
[docs]class Rgenetics(Html):
"""
base class to use for rgenetics datatypes
derived from html - composite datatype elements
stored in extra files path
"""
MetadataElement(name="base_name", desc="base name for all transformed versions of this genetic dataset", default='RgeneticsData',
readonly=True, set_in_upload=True)
composite_type = 'auto_primary_file'
allow_datatype_change = False
file_ext = 'rgenetics'
[docs] def generate_primary_file(self, dataset=None):
rval = ['<html><head><title>Rgenetics Galaxy Composite Dataset </title></head><p/>']
rval.append('<div>This composite dataset is composed of the following files:<p/><ul>')
for composite_name, composite_file in self.get_composite_files(dataset=dataset).items():
fn = composite_name
opt_text = ''
if composite_file.optional:
opt_text = ' (optional)'
if composite_file.get('description'):
rval.append('<li><a href="%s" type="application/binary">%s (%s)</a>%s</li>' % (fn, fn, composite_file.get('description'), opt_text))
else:
rval.append('<li><a href="%s" type="application/binary">%s</a>%s</li>' % (fn, fn, opt_text))
rval.append('</ul></div></html>')
return "\n".join(rval)
[docs] def regenerate_primary_file(self, dataset):
"""
cannot do this until we are setting metadata
"""
efp = dataset.extra_files_path
flist = os.listdir(efp)
rval = ['<html><head><title>Files for Composite Dataset %s</title></head><body><p/>Composite %s contains:<p/><ul>' % (dataset.name, dataset.name)]
for i, fname in enumerate(flist):
sfname = os.path.split(fname)[-1]
f, e = os.path.splitext(fname)
rval.append('<li><a href="%s">%s</a></li>' % (sfname, sfname))
rval.append('</ul></body></html>')
with open(dataset.file_name, 'w') as f:
f.write("\n".join(rval))
f.write('\n')
[docs] def set_meta(self, dataset, **kwd):
"""
for lped/pbed eg
"""
Html.set_meta(self, dataset, **kwd)
if not kwd.get('overwrite'):
if verbose:
gal_Log.debug('@@@ rgenetics set_meta called with overwrite = False')
return True
try:
efp = dataset.extra_files_path
except Exception:
if verbose:
gal_Log.debug('@@@rgenetics set_meta failed %s - dataset %s has no efp ?' % (sys.exc_info()[0], dataset.name))
return False
try:
flist = os.listdir(efp)
except Exception:
if verbose:
gal_Log.debug('@@@rgenetics set_meta failed %s - dataset %s has no efp ?' % (sys.exc_info()[0], dataset.name))
return False
if len(flist) == 0:
if verbose:
gal_Log.debug('@@@rgenetics set_meta failed - %s efp %s is empty?' % (dataset.name, efp))
return False
self.regenerate_primary_file(dataset)
if not dataset.info:
dataset.info = 'Galaxy genotype datatype object'
if not dataset.blurb:
dataset.blurb = 'Composite file - Rgenetics Galaxy toolkit'
return True
[docs]class SNPMatrix(Rgenetics):
"""
BioC SNPMatrix Rgenetics data collections
"""
file_ext = "snpmatrix"
[docs] def set_peek(self, dataset, **kwd):
if not dataset.dataset.purged:
dataset.peek = "Binary RGenetics file"
dataset.blurb = nice_size(dataset.get_size())
else:
dataset.peek = 'file does not exist'
dataset.blurb = 'file purged from disk'
[docs] def sniff(self, filename):
""" need to check the file header hex code
"""
infile = open(filename, "b")
head = infile.read(16)
head = [hex(x) for x in head]
if head != '':
return False
else:
return True
[docs]class Lped(Rgenetics):
"""
linkage pedigree (ped,map) Rgenetics data collections
"""
file_ext = "lped"
[docs] def __init__(self, **kwd):
Rgenetics.__init__(self, **kwd)
self.add_composite_file('%s.ped',
description='Pedigree File',
substitute_name_with_metadata='base_name',
is_binary=False)
self.add_composite_file('%s.map',
description='Map File',
substitute_name_with_metadata='base_name',
is_binary=False)
[docs]class Pphe(Rgenetics):
"""
Plink phenotype file - header must have FID\tIID... Rgenetics data collections
"""
file_ext = "pphe"
[docs] def __init__(self, **kwd):
Rgenetics.__init__(self, **kwd)
self.add_composite_file('%s.pphe',
description='Plink Phenotype File',
substitute_name_with_metadata='base_name',
is_binary=False)
[docs]class Fphe(Rgenetics):
"""
fbat pedigree file - mad format with ! as first char on header row
Rgenetics data collections
"""
file_ext = "fphe"
[docs] def __init__(self, **kwd):
Rgenetics.__init__(self, **kwd)
self.add_composite_file('%s.fphe',
description='FBAT Phenotype File',
substitute_name_with_metadata='base_name')
[docs]class Phe(Rgenetics):
"""
Phenotype file
"""
file_ext = "phe"
[docs] def __init__(self, **kwd):
Rgenetics.__init__(self, **kwd)
self.add_composite_file('%s.phe',
description='Phenotype File',
substitute_name_with_metadata='base_name',
is_binary=False)
[docs]class Fped(Rgenetics):
"""
FBAT pedigree format - single file, map is header row of rs numbers. Strange.
Rgenetics data collections
"""
file_ext = "fped"
[docs] def __init__(self, **kwd):
Rgenetics.__init__(self, **kwd)
self.add_composite_file('%s.fped', description='FBAT format pedfile',
substitute_name_with_metadata='base_name',
is_binary=False)
[docs]class Pbed(Rgenetics):
"""
Plink Binary compressed 2bit/geno Rgenetics data collections
"""
file_ext = "pbed"
[docs] def __init__(self, **kwd):
Rgenetics.__init__(self, **kwd)
self.add_composite_file('%s.bim', substitute_name_with_metadata='base_name', is_binary=False)
self.add_composite_file('%s.bed', substitute_name_with_metadata='base_name', is_binary=True)
self.add_composite_file('%s.fam', substitute_name_with_metadata='base_name', is_binary=False)
[docs]class ldIndep(Rgenetics):
"""
LD (a good measure of redundancy of information) depleted Plink Binary compressed 2bit/geno
This is really a plink binary, but some tools work better with less redundancy so are constrained to
these files
"""
file_ext = "ldreduced"
[docs] def __init__(self, **kwd):
Rgenetics.__init__(self, **kwd)
self.add_composite_file('%s.bim', substitute_name_with_metadata='base_name', is_binary=False)
self.add_composite_file('%s.bed', substitute_name_with_metadata='base_name', is_binary=True)
self.add_composite_file('%s.fam', substitute_name_with_metadata='base_name', is_binary=False)
[docs]class Eigenstratgeno(Rgenetics):
"""
Eigenstrat format - may be able to get rid of this
if we move to shellfish
Rgenetics data collections
"""
file_ext = "eigenstratgeno"
[docs] def __init__(self, **kwd):
Rgenetics.__init__(self, **kwd)
self.add_composite_file('%s.eigenstratgeno', substitute_name_with_metadata='base_name', is_binary=False)
self.add_composite_file('%s.ind', substitute_name_with_metadata='base_name', is_binary=False)
self.add_composite_file('%s.map', substitute_name_with_metadata='base_name', is_binary=False)
[docs]class Eigenstratpca(Rgenetics):
"""
Eigenstrat PCA file for case control adjustment
Rgenetics data collections
"""
file_ext = "eigenstratpca"
[docs] def __init__(self, **kwd):
Rgenetics.__init__(self, **kwd)
self.add_composite_file('%s.eigenstratpca',
description='Eigenstrat PCA file', substitute_name_with_metadata='base_name')
[docs]class Snptest(Rgenetics):
"""
BioC snptest Rgenetics data collections
"""
file_ext = "snptest"
[docs]class IdeasPre(Html):
"""
This datatype defines the input format required by IDEAS:
https://academic.oup.com/nar/article/44/14/6721/2468150
The IDEAS preprocessor tool produces an output using this
format. The extra_files_path of the primary input dataset
contains the following files and directories.
- chromosome_windows.txt (optional)
- chromosomes.bed (optional)
- IDEAS_input_config.txt
- compressed archived tmp directory containing a number of compressed bed files.
"""
MetadataElement(name="base_name", desc="Base name for this dataset", default='IDEASData', readonly=True, set_in_upload=True)
MetadataElement(name="chrom_bed", desc="Bed file specifying window positions", default=None, readonly=True)
MetadataElement(name="chrom_windows", desc="Chromosome window positions", default=None, readonly=True)
MetadataElement(name="input_config", desc="IDEAS input config", default=None, readonly=True)
MetadataElement(name="tmp_archive", desc="Compressed archive of compressed bed files", default=None, readonly=True)
composite_type = 'auto_primary_file'
allow_datatype_change = False
file_ext = 'ideaspre'
[docs] def __init__(self, **kwd):
Html.__init__(self, **kwd)
self.add_composite_file('chromosome_windows.txt', description='Chromosome window positions', is_binary=False, optional=True)
self.add_composite_file('chromosomes.bed', description='Bed file specifying window positions', is_binary=False, optional=True)
self.add_composite_file('IDEAS_input_config.txt', description='IDEAS input config', is_binary=False)
self.add_composite_file('tmp.tar.gz', description='Compressed archive of compressed bed files', is_binary=True)
[docs] def set_meta(self, dataset, **kwd):
Html.set_meta(self, dataset, **kwd)
for fname in os.listdir(dataset.extra_files_path):
if fname.startswith("chromosomes"):
dataset.metadata.chrom_bed = os.path.join(dataset.extra_files_path, fname)
elif fname.startswith("chromosome_windows"):
dataset.metadata.chrom_windows = os.path.join(dataset.extra_files_path, fname)
elif fname.startswith("IDEAS_input_config"):
dataset.metadata.input_config = os.path.join(dataset.extra_files_path, fname)
elif fname.startswith("tmp"):
dataset.metadata.tmp_archive = os.path.join(dataset.extra_files_path, fname)
self.regenerate_primary_file(dataset)
[docs] def generate_primary_file(self, dataset=None):
rval = ['<html><head></head><body>']
rval.append('<h3>Files prepared for IDEAS</h3>')
rval.append('<ul>')
for composite_name, composite_file in self.get_composite_files(dataset=dataset).items():
fn = composite_name
rval.append('<li><a href="%s>%s</a></li>' % (fn, fn))
rval.append('</ul></body></html>\n')
return "\n".join(rval)
[docs] def regenerate_primary_file(self, dataset):
# Cannot do this until we are setting metadata.
rval = ['<html><head></head><body>']
rval.append('<h3>Files prepared for IDEAS</h3>')
rval.append('<ul>')
for fname in os.listdir(dataset.extra_files_path):
fn = os.path.split(fname)[-1]
rval.append('<li><a href="%s">%s</a></li>' % (fn, fn))
rval.append('</ul></body></html>')
with open(dataset.file_name, 'w') as f:
f.write("\n".join(rval))
f.write('\n')
[docs]class RexpBase(Html):
"""
base class for BioC data structures in Galaxy
must be constructed with the pheno data in place since that
goes into the metadata for each instance
"""
MetadataElement(name="columns", default=0, desc="Number of columns", visible=True)
MetadataElement(name="column_names", default=[], desc="Column names", visible=True)
MetadataElement(name="pheCols", default=[], desc="Select list for potentially interesting variables", visible=True)
MetadataElement(name="base_name",
desc="base name for all transformed versions of this expression dataset", default='rexpression', set_in_upload=True)
MetadataElement(name="pheno_path", desc="Path to phenotype data for this experiment", default="rexpression.pheno", visible=True)
file_ext = 'rexpbase'
html_table = None
composite_type = 'auto_primary_file'
allow_datatype_change = False
[docs] def __init__(self, **kwd):
Html.__init__(self, **kwd)
self.add_composite_file('%s.pheno', description='Phenodata tab text file',
substitute_name_with_metadata='base_name', is_binary=False)
[docs] def generate_primary_file(self, dataset=None):
"""
This is called only at upload to write the html file
cannot rename the datasets here - they come with the default unfortunately
"""
return '<html><head></head><body>AutoGenerated Primary File for Composite Dataset</body></html>'
[docs] def get_phecols(self, phenolist=[], maxConc=20):
"""
sept 2009: cannot use whitespace to split - make a more complex structure here
and adjust the methods that rely on this structure
return interesting phenotype column names for an rexpression eset or affybatch
to use in array subsetting and so on. Returns a data structure for a
dynamic Galaxy select parameter.
A column with only 1 value doesn't change, so is not interesting for
analysis. A column with a different value in every row is equivalent to a unique
identifier so is also not interesting for anova or limma analysis - both these
are removed after the concordance (count of unique terms) is constructed for each
column. Then a complication - each remaining pair of columns is tested for
redundancy - if two columns are always paired, then only one is needed :)
"""
for nrows, row in enumerate(phenolist): # construct concordance
if len(row.strip()) == 0:
break
row = row.strip().split('\t')
if nrows == 0: # set up from header
head = row
totcols = len(row)
concordance = [{} for x in head] # list of dicts
else:
for col, code in enumerate(row): # keep column order correct
if col >= totcols:
gal_Log.warning('### get_phecols error in pheno file - row %d col %d (%s) longer than header %s' % (nrows, col, row, head))
else:
concordance[col].setdefault(code, 0) # first one is zero
concordance[col][code] += 1
useCols = []
useConc = [] # columns of interest to keep
nrows = len(phenolist)
nrows -= 1 # drop head from count
for c, conc in enumerate(concordance): # c is column number
if (len(conc) > 1) and (len(conc) < min(nrows, maxConc)): # not all same and not all different!!
useConc.append(conc) # keep concordance
useCols.append(c) # keep column
nuse = len(useCols)
# now to check for pairs of concordant columns - drop one of these.
delme = []
p = phenolist[1:] # drop header
plist = [x.strip().split('\t') for x in p] # list of lists
phe = [[x[i] for i in useCols] for x in plist if len(x) >= totcols] # strip unused data
for i in range(0, (nuse - 1)): # for each interesting column
for j in range(i + 1, nuse):
kdict = {}
for row in phe: # row is a list of lists
k = '%s%s' % (row[i], row[j]) # composite key
kdict[k] = k
if (len(kdict.keys()) == len(concordance[useCols[j]])): # i and j are always matched
delme.append(j)
delme = list(set(delme)) # remove dupes
listCol = []
delme.sort()
delme.reverse() # must delete from far end!
for i in delme:
del useConc[i] # get rid of concordance
del useCols[i] # and usecols entry
for i, conc in enumerate(useConc): # these are all unique columns for the design matrix
ccounts = sorted((conc.get(code, 0), code) for code in conc.keys()) # decorate
cc = [(x[1], x[0]) for x in ccounts] # list of code count tuples
codeDetails = (head[useCols[i]], cc) # ('foo',[('a',3),('b',11),..])
listCol.append(codeDetails)
if len(listCol) > 0:
res = listCol
# metadata.pheCols becomes [('bar;22,zot;113','foo'), ...]
else:
res = [('no usable phenotype columns found', [('?', 0), ]), ]
return res
[docs] def get_pheno(self, dataset):
"""
expects a .pheno file in the extra_files_dir - ugh
note that R is wierd and adds the row.name in
the header so the columns are all wrong - unless you tell it not to.
A file can be written as
write.table(file='foo.pheno',pData(foo),sep='\t',quote=F,row.names=F)
"""
p = open(dataset.metadata.pheno_path, 'r').readlines()
if len(p) > 0: # should only need to fix an R pheno file once
head = p[0].strip().split('\t')
line1 = p[1].strip().split('\t')
if len(head) < len(line1):
head.insert(0, 'ChipFileName') # fix R write.table b0rken-ness
p[0] = '\t'.join(head)
else:
p = []
return '\n'.join(p)
[docs] def set_peek(self, dataset, **kwd):
"""
expects a .pheno file in the extra_files_dir - ugh
note that R is weird and does not include the row.name in
the header. why?"""
if not dataset.dataset.purged:
pp = os.path.join(dataset.extra_files_path, '%s.pheno' % dataset.metadata.base_name)
try:
p = open(pp, 'r').readlines()
except Exception:
p = ['##failed to find %s' % pp, ]
dataset.peek = ''.join(p[:5])
dataset.blurb = 'Galaxy Rexpression composite file'
else:
dataset.peek = 'file does not exist\n'
dataset.blurb = 'file purged from disk'
[docs] def get_peek(self, dataset):
"""
expects a .pheno file in the extra_files_dir - ugh
"""
pp = os.path.join(dataset.extra_files_path, '%s.pheno' % dataset.metadata.base_name)
try:
p = open(pp, 'r').readlines()
except Exception:
p = ['##failed to find %s' % pp]
return ''.join(p[:5])
[docs] def get_file_peek(self, filename):
"""
can't really peek at a filename - need the extra_files_path and such?
"""
h = '## rexpression get_file_peek: no file found'
try:
h = open(filename, 'r').readlines()
except Exception:
pass
return ''.join(h[:5])
[docs] def regenerate_primary_file(self, dataset):
"""
cannot do this until we are setting metadata
"""
bn = dataset.metadata.base_name
flist = os.listdir(dataset.extra_files_path)
rval = ['<html><head><title>Files for Composite Dataset %s</title></head><p/>Comprises the following files:<p/><ul>' % (bn)]
for i, fname in enumerate(flist):
sfname = os.path.split(fname)[-1]
rval.append('<li><a href="%s">%s</a>' % (sfname, sfname))
rval.append('</ul></html>')
with open(dataset.file_name, 'w') as f:
f.write("\n".join(rval))
f.write('\n')
[docs] def init_meta(self, dataset, copy_from=None):
if copy_from:
dataset.metadata = copy_from.metadata
[docs] def set_meta(self, dataset, **kwd):
"""
NOTE we apply the tabular machinary to the phenodata extracted
from a BioC eSet or affybatch.
"""
Html.set_meta(self, dataset, **kwd)
try:
flist = os.listdir(dataset.extra_files_path)
except Exception:
if verbose:
gal_Log.debug('@@@rexpression set_meta failed - no dataset?')
return False
bn = dataset.metadata.base_name
if not bn:
for f in flist:
n = os.path.splitext(f)[0]
bn = n
dataset.metadata.base_name = bn
if not bn:
bn = '?'
dataset.metadata.base_name = bn
pn = '%s.pheno' % (bn)
pp = os.path.join(dataset.extra_files_path, pn)
dataset.metadata.pheno_path = pp
try:
pf = open(pp, 'r').readlines() # read the basename.phenodata in the extra_files_path
except Exception:
pf = None
if pf:
h = pf[0].strip()
h = h.split('\t') # hope is header
h = [escape(x) for x in h]
dataset.metadata.column_names = h
dataset.metadata.columns = len(h)
dataset.peek = ''.join(pf[:5])
else:
dataset.metadata.column_names = []
dataset.metadata.columns = 0
dataset.peek = 'No pheno file found'
if pf and len(pf) > 1:
dataset.metadata.pheCols = self.get_phecols(phenolist=pf)
else:
dataset.metadata.pheCols = [('', 'No useable phenotypes found', False), ]
if not dataset.info:
dataset.info = 'Galaxy Expression datatype object'
if not dataset.blurb:
dataset.blurb = 'R loadable BioC expression object for the Rexpression Galaxy toolkit'
return True
[docs] def make_html_table(self, pp='nothing supplied from peek\n'):
"""
Create HTML table, used for displaying peek
"""
out = ['<table cellspacing="0" cellpadding="3">', ]
try:
# Generate column header
p = pp.split('\n')
for i, row in enumerate(p):
lrow = row.strip().split('\t')
if i == 0:
orow = ['<th>%s</th>' % escape(x) for x in lrow]
orow.insert(0, '<tr>')
orow.append('</tr>')
else:
orow = ['<td>%s</td>' % escape(x) for x in lrow]
orow.insert(0, '<tr>')
orow.append('</tr>')
out.append(''.join(orow))
out.append('</table>')
out = "\n".join(out)
except Exception as exc:
out = "Can't create html table %s" % unicodify(exc)
return out
[docs] def display_peek(self, dataset):
"""
Returns formatted html of peek
"""
out = self.make_html_table(dataset.peek)
return out
[docs]class Affybatch(RexpBase):
"""
derived class for BioC data structures in Galaxy
"""
file_ext = "affybatch"
[docs] def __init__(self, **kwd):
RexpBase.__init__(self, **kwd)
self.add_composite_file('%s.affybatch',
description='AffyBatch R object saved to file',
substitute_name_with_metadata='base_name', is_binary=True)
[docs]class Eset(RexpBase):
"""
derived class for BioC data structures in Galaxy
"""
file_ext = "eset"
[docs] def __init__(self, **kwd):
RexpBase.__init__(self, **kwd)
self.add_composite_file('%s.eset',
description='ESet R object saved to file',
substitute_name_with_metadata='base_name', is_binary=True)
[docs]class MAlist(RexpBase):
"""
derived class for BioC data structures in Galaxy
"""
file_ext = "malist"
[docs] def __init__(self, **kwd):
RexpBase.__init__(self, **kwd)
self.add_composite_file('%s.malist',
description='MAlist R object saved to file',
substitute_name_with_metadata='base_name', is_binary=True)
[docs]class LinkageStudies(Text):
"""
superclass for classical linkage analysis suites
"""
test_files = [
'linkstudies.allegro_fparam', 'linkstudies.alohomora_gts',
'linkstudies.linkage_datain', 'linkstudies.linkage_map'
]
[docs]@build_sniff_from_prefix
class GenotypeMatrix(LinkageStudies):
"""
Sample matrix of genotypes
- GTs as columns
"""
file_ext = "alohomora_gts"
[docs] def header_check(self, fio):
header_elems = fio.readline().split('\t')
if header_elems[0] != "Name":
return False
try:
return all([int(sid) > 0 for sid in header_elems[1:]])
except ValueError:
return False
return True
[docs] def sniff_prefix(self, file_prefix):
"""
>>> classname = GenotypeMatrix
>>> from galaxy.datatypes.sniff import get_test_fname
>>> extn_true = classname().file_ext
>>> file_true = get_test_fname("linkstudies." + extn_true)
>>> classname().sniff(file_true)
True
>>> false_files = list(LinkageStudies.test_files)
>>> false_files.remove("linkstudies." + extn_true)
>>> result_true = []
>>> for fname in false_files:
... file_false = get_test_fname(fname)
... res = classname().sniff(file_false)
... if res:
... result_true.append(fname)
>>>
>>> result_true
[]
"""
fio = file_prefix.string_io()
num_cols = -1
if not self.header_check(fio):
return False
for lcount, line in enumerate(fio):
if lcount > self.max_lines:
return True
tokens = line.split('\t')
if num_cols == -1:
num_cols = len(tokens)
elif num_cols != len(tokens):
return False
if not VALID_GENOTYPES_LINE.match(line):
return False
return True
[docs]@build_sniff_from_prefix
class MarkerMap(LinkageStudies):
"""
Map of genetic markers including physical and genetic distance
Common input format for linkage programs
chrom, genetic pos, markername, physical pos, Nr
"""
file_ext = "linkage_map"
[docs] def header_check(self, fio):
headers = fio.readline().split()
if len(headers) == 5 and headers[0] == "#Chr":
return True
return False
[docs] def sniff_prefix(self, file_prefix):
"""
>>> classname = MarkerMap
>>> from galaxy.datatypes.sniff import get_test_fname
>>> extn_true = classname().file_ext
>>> file_true = get_test_fname("linkstudies." + extn_true)
>>> classname().sniff(file_true)
True
>>> false_files = list(LinkageStudies.test_files)
>>> false_files.remove("linkstudies." + extn_true)
>>> result_true = []
>>> for fname in false_files:
... file_false = get_test_fname(fname)
... res = classname().sniff(file_false)
... if res:
... result_true.append(fname)
>>>
>>> result_true
[]
"""
fio = file_prefix.string_io()
if not self.header_check(fio):
return False
for lcount, line in enumerate(fio):
if lcount > self.max_lines:
return True
try:
chrm, gpos, nam, bpos, row = line.split()
float(gpos)
int(bpos)
try:
int(chrm)
except ValueError:
if not chrm.lower()[0] in ('x', 'y', 'm'):
return False
except ValueError:
return False
return True
[docs]@build_sniff_from_prefix
class DataIn(LinkageStudies):
"""
Common linkage input file for intermarker distances
and recombination rates
"""
file_ext = "linkage_datain"
[docs] def sniff_prefix(self, file_prefix):
"""
>>> classname = DataIn
>>> from galaxy.datatypes.sniff import get_test_fname
>>> extn_true = classname().file_ext
>>> file_true = get_test_fname("linkstudies." + extn_true)
>>> classname().sniff(file_true)
True
>>> false_files = list(LinkageStudies.test_files)
>>> false_files.remove("linkstudies." + extn_true)
>>> result_true = []
>>> for fname in false_files:
... file_false = get_test_fname(fname)
... res = classname().sniff(file_false)
... if res:
... result_true.append(fname)
>>>
>>> result_true
[]
"""
intermarkers = 0
num_markers = None
def eof_function():
return intermarkers > 0
fio = file_prefix.string_io()
for lcount, line in enumerate(fio):
if lcount > self.max_lines:
return eof_function()
tokens = line.split()
try:
if lcount == 0:
num_markers = int(tokens[0])
map(int, tokens[1:])
elif lcount == 1:
map(float, tokens)
if len(tokens) != 4:
return False
elif lcount == 2:
map(int, tokens)
last_token = int(tokens[-1])
if num_markers is None:
return False
if len(tokens) != last_token:
return False
if num_markers != last_token:
return False
elif tokens[0] == "3" and tokens[1] == "2":
intermarkers += 1
except (ValueError, IndexError):
return False
return eof_function()
[docs]@build_sniff_from_prefix
class AllegroLOD(LinkageStudies):
"""
Allegro output format for LOD scores
"""
file_ext = "allegro_fparam"
[docs] def header_check(self, fio):
header = fio.readline().splitlines()[0].split()
if len(header) == 4 and header == [
"family", "location", "LOD", "marker"
]:
return True
return False
[docs] def sniff_prefix(self, file_prefix):
"""
>>> classname = AllegroLOD
>>> from galaxy.datatypes.sniff import get_test_fname
>>> extn_true = classname().file_ext
>>> file_true = get_test_fname("linkstudies." + extn_true)
>>> classname().sniff(file_true)
True
>>> false_files = list(LinkageStudies.test_files)
>>> false_files.remove("linkstudies." + extn_true)
>>> result_true = []
>>> for fname in false_files:
... file_false = get_test_fname(fname)
... res = classname().sniff(file_false)
... if res:
... result_true.append(fname)
>>>
>>> result_true
[]
"""
fio = file_prefix.string_io()
if not self.header_check(fio):
return False
for lcount, line in enumerate(fio):
if lcount > self.max_lines:
return True
tokens = line.split()
try:
int(tokens[0])
float(tokens[1])
if tokens[2] != "-inf":
float(tokens[2])
except (ValueError, IndexError):
return False
return True
if __name__ == '__main__':
import doctest
doctest.testmod(sys.modules[__name__])