Warning

This document is for an in-development version of Galaxy. You can alternatively view this page in the latest release if it exists or view the top of the latest release's documentation.

Source code for galaxy.dataset_collections.structure

""" Module for reasoning about structure of and matching hierarchical collections of data.
"""
import logging

import six

log = logging.getLogger(__name__)


[docs]@six.python_2_unicode_compatible class Leaf(object): children_known = True def __len__(self): return 1 @property def is_leaf(self): return True
[docs] def clone(self): return self
[docs] def multiply(self, other_structure): return other_structure.clone()
[docs] def sliced_collection_type(self, collection): return input
def __str__(self): return "Leaf[]"
leaf = Leaf()
[docs]class BaseTree(object):
[docs] def __init__(self, collection_type_description): self.collection_type_description = collection_type_description
[docs]@six.python_2_unicode_compatible class UninitializedTree(BaseTree): children_known = False
[docs] def clone(self): return self
@property def is_leaf(self): return False def __len__(self): raise Exception("Unknown length")
[docs] def multiply(self, other_structure): if other_structure.is_leaf: return self.clone() new_collection_type = self.collection_type_description.multiply(other_structure.collection_type_description) return UninitializedTree(new_collection_type)
def __str__(self): return "UninitializedTree[collection_type=%s]" % self.collection_type_description
[docs]@six.python_2_unicode_compatible class Tree(BaseTree): children_known = True
[docs] def __init__(self, children, collection_type_description): super(Tree, self).__init__(collection_type_description) self.children = children
[docs] @staticmethod def for_dataset_collection(dataset_collection, collection_type_description): children = [] for element in dataset_collection.elements: if collection_type_description.has_subcollections(): child_collection = element.child_collection subcollection_type_description = collection_type_description.subcollection_type_description() # Type description of children tree = Tree.for_dataset_collection(child_collection, collection_type_description=subcollection_type_description) children.append((element.element_identifier, tree)) else: children.append((element.element_identifier, leaf)) return Tree(children, collection_type_description)
[docs] def walk_collections(self, hdca_dict): return self._walk_collections(dict_map(lambda hdca: hdca.collection, hdca_dict))
def _walk_collections(self, collection_dict): for index, (identifier, substructure) in enumerate(self.children): def element(collection): return collection[index] if substructure.is_leaf: yield dict_map(element, collection_dict) else: sub_collections = dict_map(lambda collection: element(collection).child_collection, collection_dict) for element in substructure._walk_collections(sub_collections): yield element @property def is_leaf(self): return False
[docs] def can_match(self, other_structure): if not self.collection_type_description.can_match_type(other_structure.collection_type_description): return False if len(self.children) != len(other_structure.children): return False for my_child, other_child in zip(self.children, other_structure.children): # At least one is nested collection... if my_child[1].is_leaf != other_child[1].is_leaf: return False if not my_child[1].is_leaf and not my_child[1].can_match(other_child[1]): return False return True
def __len__(self): return sum([len(c[1]) for c in self.children])
[docs] def multiply(self, other_structure): if other_structure.is_leaf: return self.clone() new_collection_type = self.collection_type_description.multiply(other_structure.collection_type_description) new_children = [] for (identifier, structure) in self.children: new_children.append((identifier, structure.multiply(other_structure))) return Tree(new_children, new_collection_type)
[docs] def clone(self): cloned_children = [(_[0], _[1].clone()) for _ in self.children] return Tree(cloned_children, self.collection_type_description)
def __str__(self): return "Tree[collection_type=%s,children=%s]" % (self.collection_type_description, ",".join(map(lambda identifier_and_element: "%s=%s" % (identifier_and_element[0], identifier_and_element[1]), self.children)))
[docs]def tool_output_to_structure(get_sliced_input_collection_structure, tool_output, collections_manager): if not tool_output.collection: tree = leaf else: collection_type_descriptions = collections_manager.collection_type_descriptions # Okay this is ToolCollectionOutputStructure not a Structure - different # concepts of structure. structured_like = tool_output.structure.structured_like collection_type = tool_output.structure.collection_type if structured_like: tree = get_sliced_input_collection_structure(structured_like) if collection_type and tree.collection_type_description.collection_type != collection_type: # See tool paired_collection_map_over_structured_like - type should # override structured_like if they disagree. tree = UninitializedTree(collection_type_descriptions.for_collection_type(collection_type)) else: # Can't pre-compute the structure in this case, see if we can find a collection type. if collection_type is None and tool_output.structure.collection_type_source: collection_type = get_sliced_input_collection_structure(tool_output.structure.collection_type_source).collection_type_description.collection_type if not collection_type: raise Exception("Failed to determine collection type for mapping over output %s" % tool_output.name) tree = UninitializedTree(collection_type_descriptions.for_collection_type(collection_type)) if not tree.children_known and tree.collection_type_description.collection_type == "paired": # TODO: We don't need to return UninitializedTree for pairs I think, we should build # a paired tree for the known structure here. pass return tree
[docs]def dict_map(func, input_dict): return dict((k, func(v)) for k, v in input_dict.items())
[docs]def get_structure(dataset_collection_instance, collection_type_description, leaf_subcollection_type=None): if leaf_subcollection_type: collection_type_description = collection_type_description.effective_collection_type_description(leaf_subcollection_type) if hasattr(dataset_collection_instance, 'child_collection'): collection_type_description = collection_type_description.collection_type_description_factory.for_collection_type(leaf_subcollection_type) return UninitializedTree(collection_type_description) collection = dataset_collection_instance.collection return Tree.for_dataset_collection(collection, collection_type_description)