Warning
This document is for an old release of Galaxy. You can alternatively view this page in the latest release if it exists or view the top of the latest release's documentation.
Source code for galaxy_test.api.test_workflows
import json
import time
from json import dumps
from uuid import uuid4
import pytest
from requests import delete, get, put
from galaxy.exceptions import error_codes
from galaxy_test.base import rules_test_data
from galaxy_test.base.populators import (
DatasetCollectionPopulator,
DatasetPopulator,
skip_without_tool,
wait_on,
WorkflowPopulator
)
from galaxy_test.base.workflow_fixtures import (
WORKFLOW_NESTED_REPLACEMENT_PARAMETER,
WORKFLOW_NESTED_RUNTIME_PARAMETER,
WORKFLOW_NESTED_SIMPLE,
WORKFLOW_ONE_STEP_DEFAULT,
WORKFLOW_OPTIONAL_FALSE_INPUT_COLLECTION,
WORKFLOW_OPTIONAL_FALSE_INPUT_DATA,
WORKFLOW_OPTIONAL_TRUE_INPUT_COLLECTION,
WORKFLOW_OPTIONAL_TRUE_INPUT_DATA,
WORKFLOW_PARAMETER_INPUT_INTEGER_DEFAULT,
WORKFLOW_PARAMETER_INPUT_INTEGER_OPTIONAL,
WORKFLOW_PARAMETER_INPUT_INTEGER_REQUIRED,
WORKFLOW_RENAME_ON_INPUT,
WORKFLOW_RUNTIME_PARAMETER_AFTER_PAUSE,
WORKFLOW_WITH_CUSTOM_REPORT_1,
WORKFLOW_WITH_CUSTOM_REPORT_1_TEST_DATA,
WORKFLOW_WITH_DYNAMIC_OUTPUT_COLLECTION,
WORKFLOW_WITH_OUTPUT_COLLECTION,
WORKFLOW_WITH_OUTPUT_COLLECTION_MAPPING,
WORKFLOW_WITH_RULES_1,
)
from ._framework import ApiTestCase
WORKFLOW_SIMPLE = """
class: GalaxyWorkflow
name: Simple Workflow
inputs:
input1: data
outputs:
wf_output_1:
outputSource: first_cat/out_file1
steps:
first_cat:
tool_id: cat1
in:
input1: input1
"""
NESTED_WORKFLOW_AUTO_LABELS_MODERN_SYNTAX = """
class: GalaxyWorkflow
inputs:
outer_input: data
outputs:
outer_output:
outputSource: second_cat/out_file1
steps:
first_cat:
tool_id: cat1
in:
input1: outer_input
nested_workflow:
run:
class: GalaxyWorkflow
inputs:
- id: inner_input
outputs:
- outputSource: 1/out_file1
steps:
random:
tool_id: random_lines1
state:
num_lines: 1
input:
$link: inner_input
seed_source:
seed_source_selector: set_seed
seed: asdf
in:
inner_input: first_cat/out_file1
second_cat:
tool_id: cat1
in:
input1: nested_workflow/1:out_file1
queries_0|input2: nested_workflow/1:out_file1
"""
[docs]class BaseWorkflowsApiTestCase(ApiTestCase):
# TODO: Find a new file for this class.
[docs] def setUp(self):
super().setUp()
self.workflow_populator = WorkflowPopulator(self.galaxy_interactor)
self.dataset_populator = DatasetPopulator(self.galaxy_interactor)
self.dataset_collection_populator = DatasetCollectionPopulator(self.galaxy_interactor)
def _assert_user_has_workflow_with_name(self, name):
names = self._workflow_names()
assert name in names, f"No workflows with name {name} in users workflows <{names}>"
def _workflow_names(self):
index_response = self._get("workflows")
self._assert_status_code_is(index_response, 200)
names = [w["name"] for w in index_response.json()]
return names
[docs] def import_workflow(self, workflow, **kwds):
upload_response = self.workflow_populator.import_workflow(workflow, **kwds)
return upload_response
def _upload_yaml_workflow(self, has_yaml, **kwds):
return self.workflow_populator.upload_yaml_workflow(has_yaml, **kwds)
def _setup_workflow_run(self, workflow=None, inputs_by='step_id', history_id=None, workflow_id=None):
if not workflow_id:
workflow_id = self.workflow_populator.create_workflow(workflow)
if not history_id:
history_id = self.dataset_populator.new_history()
hda1 = self.dataset_populator.new_dataset(history_id, content="1 2 3")
hda2 = self.dataset_populator.new_dataset(history_id, content="4 5 6")
workflow_request = dict(
history=f"hist_id={history_id}",
workflow_id=workflow_id,
)
label_map = {
'WorkflowInput1': self._ds_entry(hda1),
'WorkflowInput2': self._ds_entry(hda2)
}
if inputs_by == 'step_id':
ds_map = self._build_ds_map(workflow_id, label_map)
workflow_request["ds_map"] = ds_map
elif inputs_by == "step_index":
index_map = {
'0': self._ds_entry(hda1),
'1': self._ds_entry(hda2)
}
workflow_request["inputs"] = dumps(index_map)
workflow_request["inputs_by"] = 'step_index'
elif inputs_by == "name":
workflow_request["inputs"] = dumps(label_map)
workflow_request["inputs_by"] = 'name'
elif inputs_by in ["step_uuid", "uuid_implicitly"]:
uuid_map = {
workflow["steps"]["0"]["uuid"]: self._ds_entry(hda1),
workflow["steps"]["1"]["uuid"]: self._ds_entry(hda2),
}
workflow_request["inputs"] = dumps(uuid_map)
if inputs_by == "step_uuid":
workflow_request["inputs_by"] = "step_uuid"
return workflow_request, history_id
def _build_ds_map(self, workflow_id, label_map):
workflow_inputs = self._workflow_inputs(workflow_id)
ds_map = {}
for key, value in workflow_inputs.items():
label = value["label"]
if label in label_map:
ds_map[key] = label_map[label]
return dumps(ds_map)
def _ds_entry(self, history_content):
return self.dataset_populator.ds_entry(history_content)
def _workflow_inputs(self, uploaded_workflow_id):
workflow_show_resposne = self._get(f"workflows/{uploaded_workflow_id}")
self._assert_status_code_is(workflow_show_resposne, 200)
workflow_inputs = workflow_show_resposne.json()["inputs"]
return workflow_inputs
def _invocation_details(self, workflow_id, invocation_id, **kwds):
invocation_details_response = self._get(f"workflows/{workflow_id}/usage/{invocation_id}", data=kwds)
self._assert_status_code_is(invocation_details_response, 200)
invocation_details = invocation_details_response.json()
return invocation_details
def _run_jobs(self, has_workflow, history_id=None, **kwds):
if history_id is None:
history_id = self.history_id
return self.workflow_populator.run_workflow(has_workflow, history_id=history_id, **kwds)
def _history_jobs(self, history_id):
return self._get("jobs", {"history_id": history_id, "order_by": "create_time"}).json()
def _assert_history_job_count(self, history_id, n):
jobs = self._history_jobs(history_id)
self.assertEqual(len(jobs), n)
def _download_workflow(self, workflow_id, style=None, history_id=None):
return self.workflow_populator.download_workflow(workflow_id, style=style, history_id=history_id)
[docs] def wait_for_invocation_and_jobs(self, history_id, workflow_id, invocation_id, assert_ok=True):
state = self.workflow_populator.wait_for_invocation(workflow_id, invocation_id)
if assert_ok:
assert state == "scheduled", state
self.workflow_populator.wait_for_invocation(workflow_id, invocation_id)
time.sleep(.5)
self.dataset_populator.wait_for_history_jobs(history_id, assert_ok=assert_ok)
time.sleep(.5)
def _assert_is_runtime_input(self, tool_state_value):
if not isinstance(tool_state_value, dict):
tool_state_value = json.loads(tool_state_value)
assert isinstance(tool_state_value, dict)
assert "__class__" in tool_state_value
assert tool_state_value["__class__"] == "RuntimeValue"
[docs]class ChangeDatatypeTestCase:
[docs] def test_assign_column_pja(self):
with self.dataset_populator.test_history() as history_id:
self.workflow_populator.run_workflow("""
class: GalaxyWorkflow
inputs:
input1: data
steps:
first_cat:
tool_id: cat
in:
input1: input1
outputs:
out_file1:
change_datatype: bed
set_columns:
chromCol: 1
endCol: 2
startCol: 3
""", test_data="""
input1:
value: 1.bed
type: File
""", history_id=history_id)
details_dataset_new_col = self.dataset_populator.get_history_dataset_details(history_id, hid=2, wait=True, assert_ok=True)
assert details_dataset_new_col["history_content_type"] == "dataset", details_dataset_new_col
assert details_dataset_new_col['metadata_endCol'] == 2
assert details_dataset_new_col['metadata_startCol'] == 3
# Workflow API TODO:
# - Allow history_id as param to workflow run action. (hist_id)
# - Allow post to workflows/<workflow_id>/run in addition to posting to
# /workflows with id in payload.
# - Much more testing obviously, always more testing.
[docs]class WorkflowsApiTestCase(BaseWorkflowsApiTestCase, ChangeDatatypeTestCase):
[docs] def test_show_valid(self):
workflow_id = self.workflow_populator.simple_workflow("dummy")
workflow_id = self.workflow_populator.simple_workflow("test_regular")
show_response = self._get(f"workflows/{workflow_id}", {"style": "instance"})
workflow = show_response.json()
self._assert_looks_like_instance_workflow_representation(workflow)
assert len(workflow["steps"]) == 3
self.assertEqual(sorted(step["id"] for step in workflow["steps"].values()), [0, 1, 2])
show_response = self._get(f"workflows/{workflow_id}", {"legacy": True})
workflow = show_response.json()
self._assert_looks_like_instance_workflow_representation(workflow)
assert len(workflow["steps"]) == 3
# Can't reay say what the legacy IDs are but must be greater than 3 because dummy
# workflow was created first in this instance.
self.assertNotEqual(sorted(step["id"] for step in workflow["steps"].values()), [0, 1, 2])
[docs] def test_show_invalid_key_is_400(self):
show_response = self._get(f"workflows/{self._random_key()}")
self._assert_status_code_is(show_response, 400)
[docs] def test_cannot_show_private_workflow(self):
workflow_id = self.workflow_populator.simple_workflow("test_not_importable")
with self._different_user():
show_response = self._get(f"workflows/{workflow_id}")
self._assert_status_code_is(show_response, 403)
# Try as anonymous user
workflows_url = self._api_url(f"workflows/{workflow_id}")
assert get(workflows_url).status_code == 403
[docs] def test_cannot_download_private_workflow(self):
workflow_id = self.workflow_populator.simple_workflow("test_not_downloadable")
with self._different_user():
with pytest.raises(AssertionError) as excinfo:
self._download_workflow(workflow_id)
assert '403' in str(excinfo.value)
workflows_url = self._api_url(f"workflows/{workflow_id}/download")
assert get(workflows_url).status_code == 403
[docs] def test_anon_can_download_public_workflow(self):
workflow_id = self.workflow_populator.simple_workflow("test_downloadable", publish=True)
workflows_url = self._api_url(f"workflows/{workflow_id}/download")
response = get(workflows_url)
response.raise_for_status()
assert response.json()['a_galaxy_workflow'] == 'true'
[docs] def test_delete(self):
workflow_id = self.workflow_populator.simple_workflow("test_delete")
workflow_name = "test_delete"
self._assert_user_has_workflow_with_name(workflow_name)
workflow_url = self._api_url(f"workflows/{workflow_id}", use_key=True)
delete_response = delete(workflow_url)
self._assert_status_code_is(delete_response, 200)
# Make sure workflow is no longer in index by default.
assert workflow_name not in self._workflow_names()
[docs] def test_other_cannot_delete(self):
workflow_id = self.workflow_populator.simple_workflow("test_other_delete")
with self._different_user():
workflow_url = self._api_url(f"workflows/{workflow_id}", use_key=True)
delete_response = delete(workflow_url)
self._assert_status_code_is(delete_response, 403)
[docs] def test_index(self):
index_response = self._get("workflows")
self._assert_status_code_is(index_response, 200)
assert isinstance(index_response.json(), list)
[docs] def test_index_deleted(self):
workflow_id = self.workflow_populator.simple_workflow("test_delete")
workflow_index = self._get("workflows").json()
assert [w for w in workflow_index if w['id'] == workflow_id]
workflow_url = self._api_url(f"workflows/{workflow_id}", use_key=True)
delete_response = delete(workflow_url)
self._assert_status_code_is(delete_response, 200)
workflow_index = self._get("workflows").json()
assert not [w for w in workflow_index if w['id'] == workflow_id]
workflow_index = self._get("workflows?show_deleted=true").json()
assert [w for w in workflow_index if w['id'] == workflow_id]
[docs] def test_import_tools_requires_admin(self):
response = self.__test_upload(import_tools=True, assert_ok=False)
assert response.status_code == 403
def __test_upload(self, use_deprecated_route=False, name="test_import", workflow=None, assert_ok=True, import_tools=False):
if workflow is None:
workflow = self.workflow_populator.load_workflow(name=name)
data = dict(
workflow=dumps(workflow),
)
if import_tools:
data["import_tools"] = import_tools
if use_deprecated_route:
route = "workflows/upload"
else:
route = "workflows"
upload_response = self._post(route, data=data)
if assert_ok:
self._assert_status_code_is(upload_response, 200)
self._assert_user_has_workflow_with_name(name)
return upload_response
[docs] def test_get_tool_predictions(self):
request = {"tool_sequence": "Cut1", "remote_model_url": "https://github.com/galaxyproject/galaxy-test-data/raw/master/tool_recommendation_model.hdf5"}
actual_recommendations = ['Filter1', 'cat1', 'addValue', 'comp1', 'Grep1']
route = "workflows/get_tool_predictions"
response = self._post(route, data=request)
recommendation_response = response.json()
is_empty = bool(recommendation_response["current_tool"])
if is_empty is False:
self._assert_status_code_is(response, 400)
else:
# check Ok response from the API
self._assert_status_code_is(response, 200)
recommendation_response = response.json()
# check the input tool sequence
assert recommendation_response["current_tool"] == request["tool_sequence"]
# check non-empty predictions list
predicted_tools = recommendation_response["predicted_data"]["children"]
assert len(predicted_tools) > 0
# check for the correct predictions
for tool in predicted_tools:
assert tool["tool_id"] in actual_recommendations
break
[docs] def test_update(self):
original_workflow = self.workflow_populator.load_workflow(name="test_import")
uuids = {}
labels = {}
for order_index, step_dict in original_workflow["steps"].items():
uuid = str(uuid4())
step_dict["uuid"] = uuid
uuids[order_index] = uuid
label = f"label_{order_index}"
step_dict["label"] = label
labels[order_index] = label
def check_label_and_uuid(order_index, step_dict):
assert order_index in uuids
assert order_index in labels
self.assertEqual(uuids[order_index], step_dict["uuid"])
self.assertEqual(labels[order_index], step_dict["label"])
upload_response = self.__test_upload(workflow=original_workflow)
workflow_id = upload_response.json()["id"]
def update(workflow_object):
put_response = self._update_workflow(workflow_id, workflow_object)
self._assert_status_code_is(put_response, 200)
return put_response
workflow_content = self._download_workflow(workflow_id)
steps = workflow_content["steps"]
def tweak_step(step):
order_index, step_dict = step
check_label_and_uuid(order_index, step_dict)
assert step_dict['position']['top'] != 1
assert step_dict['position']['left'] != 1
step_dict['position'] = {'top': 1, 'left': 1}
map(tweak_step, steps.items())
update(workflow_content)
def check_step(step):
order_index, step_dict = step
check_label_and_uuid(order_index, step_dict)
assert step_dict['position']['top'] == 1
assert step_dict['position']['left'] == 1
updated_workflow_content = self._download_workflow(workflow_id)
map(check_step, updated_workflow_content['steps'].items())
# Re-update against original workflow...
update(original_workflow)
updated_workflow_content = self._download_workflow(workflow_id)
# Make sure the positions have been updated.
map(tweak_step, updated_workflow_content['steps'].items())
[docs] def test_update_tags(self):
workflow_object = self.workflow_populator.load_workflow(name="test_import")
upload_response = self.__test_upload(workflow=workflow_object)
workflow = upload_response.json()
workflow['tags'] = ['a_tag', 'b_tag']
update_response = self._update_workflow(workflow['id'], workflow).json()
assert update_response['tags'] == ['a_tag', 'b_tag']
del workflow['tags']
update_response = self._update_workflow(workflow['id'], workflow).json()
assert update_response['tags'] == ['a_tag', 'b_tag']
workflow['tags'] = []
update_response = self._update_workflow(workflow['id'], workflow).json()
assert update_response['tags'] == []
[docs] def test_update_name(self):
original_name = "test update name"
workflow_object = self.workflow_populator.load_workflow(name=original_name)
workflow_object["license"] = "AAL"
upload_response = self.__test_upload(workflow=workflow_object, name=original_name)
workflow = upload_response.json()
workflow_id = workflow['id']
assert workflow['name'] == original_name
workflow_dict = self.workflow_populator.download_workflow(workflow_id)
assert workflow_dict["license"] == "AAL"
data = {"name": "my cool new name"}
update_response = self._update_workflow(workflow['id'], data).json()
assert update_response['name'] == "my cool new name"
workflow_dict = self.workflow_populator.download_workflow(workflow_id)
assert workflow_dict["license"] == "AAL"
[docs] def test_refactor(self):
workflow_id = self.workflow_populator.upload_yaml_workflow("""
class: GalaxyWorkflow
inputs:
test_input: data
steps:
first_cat:
tool_id: cat
in:
input1: test_input
""")
actions = [
{"action_type": "update_step_label", "step": {"order_index": 0}, "label": "new_label"},
]
# perform refactoring as dry run
refactor_response = self.workflow_populator.refactor_workflow(workflow_id, actions, dry_run=True)
refactor_response.raise_for_status()
assert refactor_response.json()["workflow"]["steps"]["0"]["label"] == "new_label"
# perform refactoring as dry run but specify editor style response
refactor_response = self.workflow_populator.refactor_workflow(workflow_id, actions, dry_run=True, style="editor")
refactor_response.raise_for_status()
assert refactor_response.json()["workflow"]["steps"]["0"]["label"] == "new_label"
# download the original workflow and make sure the dry run didn't modify that label
workflow_dict = self.workflow_populator.download_workflow(workflow_id)
assert workflow_dict["steps"]["0"]["label"] == "test_input"
refactor_response = self.workflow_populator.refactor_workflow(workflow_id, actions)
refactor_response.raise_for_status()
assert refactor_response.json()["workflow"]["steps"]["0"]["label"] == "new_label"
# this time dry_run was default of False, so the label is indeed changed
workflow_dict = self.workflow_populator.download_workflow(workflow_id)
assert workflow_dict["steps"]["0"]["label"] == "new_label"
[docs] def test_update_no_tool_id(self):
workflow_object = self.workflow_populator.load_workflow(name="test_import")
upload_response = self.__test_upload(workflow=workflow_object)
workflow_id = upload_response.json()["id"]
del workflow_object["steps"]["2"]["tool_id"]
put_response = self._update_workflow(workflow_id, workflow_object)
self._assert_status_code_is(put_response, 400)
[docs] def test_update_missing_tool(self):
# Create allows missing tools, update doesn't currently...
workflow_object = self.workflow_populator.load_workflow(name="test_import")
upload_response = self.__test_upload(workflow=workflow_object)
workflow_id = upload_response.json()["id"]
workflow_object["steps"]["2"]["tool_id"] = "cat-not-found"
put_response = self._update_workflow(workflow_id, workflow_object)
self._assert_status_code_is(put_response, 400)
[docs] def test_require_unique_step_uuids(self):
workflow_dup_uuids = self.workflow_populator.load_workflow(name="test_import")
uuid0 = str(uuid4())
for step_dict in workflow_dup_uuids["steps"].values():
step_dict["uuid"] = uuid0
response = self.workflow_populator.create_workflow_response(workflow_dup_uuids)
self._assert_status_code_is(response, 400)
[docs] def test_require_unique_step_labels(self):
workflow_dup_label = self.workflow_populator.load_workflow(name="test_import")
for step_dict in workflow_dup_label["steps"].values():
step_dict["label"] = "my duplicated label"
response = self.workflow_populator.create_workflow_response(workflow_dup_label)
self._assert_status_code_is(response, 400)
[docs] def test_import_deprecated(self):
workflow_id = self.workflow_populator.simple_workflow("test_import_published_deprecated", publish=True)
with self._different_user():
other_import_response = self.__import_workflow(workflow_id)
self._assert_status_code_is(other_import_response, 200)
self._assert_user_has_workflow_with_name("imported: test_import_published_deprecated")
[docs] def test_import_export_dynamic(self):
workflow_id = self._upload_yaml_workflow("""
class: GalaxyWorkflow
steps:
- type: input
label: input1
- tool_id: cat1
label: first_cat
state:
input1:
$link: 0
- label: embed1
run:
class: GalaxyTool
command: echo 'hello world 2' > $output1
outputs:
output1:
format: txt
- tool_id: cat1
state:
input1:
$link: first_cat/out_file1
queries:
input2:
$link: embed1/output1
test_data:
input1: "hello world"
""")
downloaded_workflow = self._download_workflow(workflow_id)
# The _upload_yaml_workflow entry point uses an admin key, but if we try to
# do the raw re-import as a regular user we expect a 403 error.
response = self.workflow_populator.create_workflow_response(downloaded_workflow)
self._assert_status_code_is(response, 403)
[docs] def test_import_annotations(self):
workflow_id = self.workflow_populator.simple_workflow("test_import_annotations", publish=True)
with self._different_user():
other_import_response = self.__import_workflow(workflow_id)
self._assert_status_code_is(other_import_response, 200)
# Test annotations preserved during upload and copied over during
# import.
other_id = other_import_response.json()["id"]
imported_workflow = self._show_workflow(other_id)
assert imported_workflow["annotation"] == "simple workflow"
step_annotations = {step["annotation"] for step in imported_workflow["steps"].values()}
assert "input1 description" in step_annotations
[docs] def test_import_subworkflows(self):
def get_subworkflow_content_id(workflow_id):
workflow_contents = self._download_workflow(workflow_id, style="editor")
steps = workflow_contents['steps']
subworkflow_step = next(s for s in steps.values() if s["type"] == "subworkflow")
return subworkflow_step['content_id']
workflow_id = self._upload_yaml_workflow(WORKFLOW_NESTED_SIMPLE, publish=True)
subworkflow_content_id = get_subworkflow_content_id(workflow_id)
instance_response = self._get(f"workflows/{subworkflow_content_id}?instance=true")
self._assert_status_code_is(instance_response, 200)
subworkflow = instance_response.json()
assert subworkflow['inputs']['0']['label'] == 'inner_input'
assert subworkflow['name'] == 'Workflow'
assert subworkflow['hidden']
with self._different_user():
other_import_response = self.__import_workflow(workflow_id)
self._assert_status_code_is(other_import_response, 200)
imported_workflow_id = other_import_response.json()["id"]
imported_subworkflow_content_id = get_subworkflow_content_id(imported_workflow_id)
assert subworkflow_content_id != imported_subworkflow_content_id
[docs] def test_subworkflow_inputs_optional_editor(self):
workflow_id = self._upload_yaml_workflow("""
class: GalaxyWorkflow
steps:
nested_workflow:
run:
class: GalaxyWorkflow
inputs:
- id: inner_input
optional: true
outputs:
- outputSource: inner_input/output
steps: []
""")
workflow_contents = self._download_workflow(workflow_id, style="editor")
assert workflow_contents['steps']['0']['inputs'][0]['optional']
[docs] def test_not_importable_prevents_import(self):
workflow_id = self.workflow_populator.simple_workflow("test_not_importportable")
with self._different_user():
other_import_response = self.__import_workflow(workflow_id)
self._assert_status_code_is(other_import_response, 403)
[docs] def test_anonymous_published(self):
def anonymous_published_workflows():
workflows_url = self._api_url("workflows?show_published=True")
return get(workflows_url).json()
names = [w["name"] for w in anonymous_published_workflows()]
assert "test published example" not in names
workflow_id = self.workflow_populator.simple_workflow("test published example", publish=True)
names = [w["name"] for w in anonymous_published_workflows()]
assert "test published example" in names
ids = [w["id"] for w in anonymous_published_workflows()]
assert workflow_id in ids
[docs] def test_import_published(self):
workflow_id = self.workflow_populator.simple_workflow("test_import_published", publish=True)
with self._different_user():
other_import_response = self.__import_workflow(workflow_id, deprecated_route=True)
self._assert_status_code_is(other_import_response, 200)
self._assert_user_has_workflow_with_name("imported: test_import_published")
[docs] def test_export(self):
uploaded_workflow_id = self.workflow_populator.simple_workflow("test_for_export")
downloaded_workflow = self._download_workflow(uploaded_workflow_id)
assert downloaded_workflow["name"] == "test_for_export"
steps = downloaded_workflow["steps"]
assert len(steps) == 3
assert "0" in steps
first_step = steps["0"]
self._assert_has_keys(first_step, "inputs", "outputs")
inputs = first_step["inputs"]
assert len(inputs) > 0, first_step
first_input = inputs[0]
assert first_input["name"] == "WorkflowInput1"
assert first_input["description"] == "input1 description"
self._assert_has_keys(downloaded_workflow, "a_galaxy_workflow", "format-version", "annotation", "uuid", "steps")
for step in downloaded_workflow["steps"].values():
self._assert_has_keys(
step,
'id',
'type',
'tool_id',
'tool_version',
'name',
'tool_state',
'annotation',
'inputs',
'workflow_outputs',
'outputs'
)
if step['type'] == "tool":
self._assert_has_keys(step, "post_job_actions")
[docs] def test_export_format2(self):
uploaded_workflow_id = self.workflow_populator.simple_workflow("test_for_export_format2")
downloaded_workflow = self._download_workflow(uploaded_workflow_id, style="format2")
assert downloaded_workflow["class"] == "GalaxyWorkflow"
[docs] def test_export_editor(self):
uploaded_workflow_id = self.workflow_populator.simple_workflow("test_for_export")
downloaded_workflow = self._download_workflow(uploaded_workflow_id, style="editor")
self._assert_has_keys(downloaded_workflow, "name", "steps", "upgrade_messages")
for step in downloaded_workflow["steps"].values():
self._assert_has_keys(
step,
'id',
'type',
'content_id',
'name',
'tool_state',
'tooltip',
'inputs',
'outputs',
'config_form',
'annotation',
'post_job_actions',
'workflow_outputs',
'uuid',
'label',
)
[docs] @skip_without_tool('output_filter_with_input')
def test_export_editor_filtered_outputs(self):
template = """
class: GalaxyWorkflow
steps:
- tool_id: output_filter_with_input
state:
produce_out_1: {produce_out_1}
filter_text_1: {filter_text_1}
produce_collection: false
produce_paired_collection: false
"""
workflow_id = self._upload_yaml_workflow(template.format(produce_out_1='false', filter_text_1='false'))
downloaded_workflow = self._download_workflow(workflow_id, style="editor")
outputs = downloaded_workflow['steps']['0']['outputs']
assert len(outputs) == 1
assert outputs[0]['name'] == 'out_3'
workflow_id = self._upload_yaml_workflow(template.format(produce_out_1='true', filter_text_1='false'))
downloaded_workflow = self._download_workflow(workflow_id, style="editor")
outputs = downloaded_workflow['steps']['0']['outputs']
assert len(outputs) == 2
assert outputs[0]['name'] == 'out_1'
assert outputs[1]['name'] == 'out_3'
workflow_id = self._upload_yaml_workflow(template.format(produce_out_1='true', filter_text_1='foo'))
downloaded_workflow = self._download_workflow(workflow_id, style="editor")
outputs = downloaded_workflow['steps']['0']['outputs']
assert len(outputs) == 3
assert outputs[0]['name'] == 'out_1'
assert outputs[1]['name'] == 'out_2'
assert outputs[2]['name'] == 'out_3'
[docs] @skip_without_tool('output_filter_exception_1')
def test_export_editor_filtered_outputs_exception_handling(self):
workflow_id = self._upload_yaml_workflow("""
class: GalaxyWorkflow
steps:
- tool_id: output_filter_exception_1
""")
downloaded_workflow = self._download_workflow(workflow_id, style="editor")
outputs = downloaded_workflow['steps']['0']['outputs']
assert len(outputs) == 2
assert outputs[0]['name'] == 'out_1'
assert outputs[1]['name'] == 'out_2'
[docs] @skip_without_tool('collection_type_source')
def test_export_editor_collection_type_source(self):
workflow_id = self._upload_yaml_workflow("""
class: GalaxyWorkflow
inputs:
- id: text_input1
type: collection
collection_type: "list:paired"
steps:
- tool_id: collection_type_source
in:
input_collect: text_input1
""")
downloaded_workflow = self._download_workflow(workflow_id, style="editor")
steps = downloaded_workflow['steps']
assert len(steps) == 2
# Non-subworkflow collection_type_source tools will be handled by the client,
# so collection_type should be None here.
assert steps['1']['outputs'][0]['collection_type'] is None
[docs] @skip_without_tool('collection_type_source')
def test_export_editor_subworkflow_collection_type_source(self):
workflow_id = self._upload_yaml_workflow("""
class: GalaxyWorkflow
inputs:
outer_input: data
steps:
inner_workflow:
run:
class: GalaxyWorkflow
inputs:
inner_input:
type: collection
collection_type: "list:paired"
outputs:
workflow_output:
outputSource: collection_type_source/list_output
steps:
collection_type_source:
tool_id: collection_type_source
in:
input_collect: inner_input
in:
inner_input: outer_input
""")
downloaded_workflow = self._download_workflow(workflow_id, style="editor")
steps = downloaded_workflow['steps']
assert len(steps) == 2
assert steps['1']['type'] == 'subworkflow'
assert steps['1']['outputs'][0]['collection_type'] == 'list:paired'
[docs] def test_import_missing_tool(self):
workflow = self.workflow_populator.load_workflow_from_resource(name="test_workflow_missing_tool")
workflow_id = self.workflow_populator.create_workflow(workflow)
workflow_description = self._show_workflow(workflow_id)
steps = workflow_description["steps"]
missing_tool_steps = [v for v in steps.values() if v['tool_id'] == 'cat_missing_tool']
assert len(missing_tool_steps) == 1
[docs] def test_import_no_tool_id(self):
# Import works with missing tools, but not with absent content/tool id.
workflow = self.workflow_populator.load_workflow_from_resource(name="test_workflow_missing_tool")
del workflow["steps"]["2"]["tool_id"]
create_response = self.__test_upload(workflow=workflow, assert_ok=False)
self._assert_status_code_is(create_response, 400)
[docs] def test_import_export_with_runtime_inputs(self):
workflow = self.workflow_populator.load_workflow_from_resource(name="test_workflow_with_runtime_input")
workflow_id = self.workflow_populator.create_workflow(workflow)
downloaded_workflow = self._download_workflow(workflow_id)
assert len(downloaded_workflow["steps"]) == 2
runtime_step = downloaded_workflow["steps"]["1"]
for runtime_input in runtime_step["inputs"]:
if runtime_input["name"] == "num_lines":
break
assert runtime_input["description"].startswith("runtime parameter for tool")
tool_state = json.loads(runtime_step["tool_state"])
assert "num_lines" in tool_state
self._assert_is_runtime_input(tool_state["num_lines"])
[docs] @skip_without_tool("cat1")
def test_run_workflow_by_index(self):
self.__run_cat_workflow(inputs_by='step_index')
[docs] @skip_without_tool("cat1")
def test_run_workflow_by_uuid(self):
self.__run_cat_workflow(inputs_by='step_uuid')
[docs] @skip_without_tool("cat1")
def test_run_workflow_by_uuid_implicitly(self):
self.__run_cat_workflow(inputs_by='uuid_implicitly')
[docs] @skip_without_tool("cat1")
def test_run_workflow_by_name(self):
self.__run_cat_workflow(inputs_by='name')
[docs] @skip_without_tool("cat1")
def test_run_workflow(self):
self.__run_cat_workflow(inputs_by='step_id')
[docs] @skip_without_tool("multiple_versions")
def test_run_versioned_tools(self):
with self.dataset_populator.test_history() as history_01_id:
workflow_version_01 = self._upload_yaml_workflow("""
class: GalaxyWorkflow
steps:
multiple:
tool_id: multiple_versions
tool_version: "0.1"
state:
inttest: 0
""")
self.__invoke_workflow(history_01_id, workflow_version_01)
self.dataset_populator.wait_for_history(history_01_id, assert_ok=True)
with self.dataset_populator.test_history() as history_02_id:
workflow_version_02 = self._upload_yaml_workflow("""
class: GalaxyWorkflow
steps:
multiple:
tool_id: multiple_versions
tool_version: "0.2"
state:
inttest: 1
""")
self.__invoke_workflow(history_02_id, workflow_version_02)
self.dataset_populator.wait_for_history(history_02_id, assert_ok=True)
def __run_cat_workflow(self, inputs_by):
workflow = self.workflow_populator.load_workflow(name="test_for_run")
workflow["steps"]["0"]["uuid"] = str(uuid4())
workflow["steps"]["1"]["uuid"] = str(uuid4())
workflow_request, history_id = self._setup_workflow_run(workflow, inputs_by=inputs_by)
# TODO: This should really be a post to workflows/<workflow_id>/run or
# something like that.
run_workflow_response = self._post("workflows", data=workflow_request)
self._assert_status_code_is(run_workflow_response, 200)
invocation_id = run_workflow_response.json()["id"]
invocation = self._invocation_details(workflow_request["workflow_id"], invocation_id)
assert invocation["state"] == "scheduled", invocation
self._assert_status_code_is(run_workflow_response, 200)
self.dataset_populator.wait_for_history(history_id, assert_ok=True)
[docs] def test_run_workflow_with_missing_tool(self):
with self.dataset_populator.test_history() as history_id:
workflow_id = self._upload_yaml_workflow("""
class: GalaxyWorkflow
steps:
step1:
tool_id: nonexistent_tool
tool_version: "0.1"
""")
invocation_response = self.__invoke_workflow(history_id, workflow_id, assert_ok=False)
self._assert_status_code_is(invocation_response, 400)
self.assertEqual(invocation_response.json().get('err_msg'), "Workflow was not invoked; the following required tools are not installed: nonexistent_tool")
[docs] @skip_without_tool("collection_creates_pair")
def test_workflow_run_output_collections(self):
with self.dataset_populator.test_history() as history_id:
self._run_jobs(WORKFLOW_WITH_OUTPUT_COLLECTION, history_id=history_id, assert_ok=True, wait=True)
self.assertEqual("a\nc\nb\nd\n", self.dataset_populator.get_history_dataset_content(history_id, hid=0))
[docs] @skip_without_tool("job_properties")
@skip_without_tool("identifier_multiple_in_conditional")
def test_workflow_resume_from_failed_step(self):
workflow_id = self._upload_yaml_workflow("""
class: GalaxyWorkflow
steps:
job_props:
tool_id: job_properties
state:
thebool: true
failbool: true
identifier:
tool_id: identifier_multiple_in_conditional
state:
outer_cond:
cond_param_outer: true
inner_cond:
cond_param_inner: true
input1:
$link: 0/out_file1
thedata: null
cat:
tool_id: cat1
in:
input1: identifier/output1
queries_0|input2: identifier/output1
""")
with self.dataset_populator.test_history() as history_id:
invocation_id = self.__invoke_workflow(history_id, workflow_id)
self.wait_for_invocation_and_jobs(history_id, workflow_id, invocation_id, assert_ok=False)
failed_dataset_one = self.dataset_populator.get_history_dataset_details(history_id, hid=1, wait=True, assert_ok=False)
assert failed_dataset_one['state'] == 'error', failed_dataset_one
paused_dataset = self.dataset_populator.get_history_dataset_details(history_id, hid=5, wait=True, assert_ok=False)
assert paused_dataset['state'] == 'paused', paused_dataset
inputs = {"thebool": "false",
"failbool": "false",
"rerun_remap_job_id": failed_dataset_one['creating_job']}
self.dataset_populator.run_tool(tool_id='job_properties',
inputs=inputs,
history_id=history_id,
assert_ok=True)
unpaused_dataset_1 = self.dataset_populator.get_history_dataset_details(history_id, hid=5, wait=True, assert_ok=False)
assert unpaused_dataset_1['state'] == 'ok'
self.dataset_populator.wait_for_history(history_id, assert_ok=False)
unpaused_dataset_2 = self.dataset_populator.get_history_dataset_details(history_id, hid=6, wait=True, assert_ok=False)
assert unpaused_dataset_2['state'] == 'ok'
[docs] @skip_without_tool("job_properties")
@skip_without_tool("collection_creates_list")
def test_workflow_resume_from_failed_step_with_hdca_input(self):
workflow_id = self._upload_yaml_workflow("""
class: GalaxyWorkflow
steps:
job_props:
tool_id: job_properties
state:
thebool: true
failbool: true
list_in_list_out:
tool_id: collection_creates_list
in:
input1: job_props/list_output
identifier:
tool_id: identifier_collection
in:
input1: list_in_list_out/list_output
""")
with self.dataset_populator.test_history() as history_id:
invocation_id = self.__invoke_workflow(history_id, workflow_id)
self.wait_for_invocation_and_jobs(history_id, workflow_id, invocation_id, assert_ok=False)
failed_dataset_one = self.dataset_populator.get_history_dataset_details(history_id, hid=1, wait=True, assert_ok=False)
assert failed_dataset_one['state'] == 'error', failed_dataset_one
paused_colletion = self.dataset_populator.get_history_collection_details(history_id, hid=7, wait=True, assert_ok=False)
first_paused_element = paused_colletion['elements'][0]['object']
assert first_paused_element['state'] == 'paused', first_paused_element
dependent_dataset = self.dataset_populator.get_history_dataset_details(history_id, hid=8, wait=True,
assert_ok=False)
assert dependent_dataset['state'] == 'paused'
inputs = {"thebool": "false",
"failbool": "false",
"rerun_remap_job_id": failed_dataset_one['creating_job']}
self.dataset_populator.run_tool(tool_id='job_properties',
inputs=inputs,
history_id=history_id,
assert_ok=True)
paused_colletion = self.dataset_populator.get_history_collection_details(history_id, hid=7, wait=True, assert_ok=False)
first_paused_element = paused_colletion['elements'][0]['object']
assert first_paused_element['state'] == 'ok'
self.dataset_populator.wait_for_history(history_id, assert_ok=False)
dependent_dataset = self.dataset_populator.get_history_dataset_details(history_id, hid=8, wait=True, assert_ok=False)
assert dependent_dataset['name'].startswith('identifier_collection')
assert dependent_dataset['state'] == 'ok'
[docs] @skip_without_tool("fail_identifier")
@skip_without_tool("identifier_collection")
def test_workflow_resume_with_mapped_over_input(self):
with self.dataset_populator.test_history() as history_id:
job_summary = self._run_jobs("""
class: GalaxyWorkflow
inputs:
input_datasets: collection
steps:
fail_identifier_1:
tool_id: fail_identifier
state:
failbool: true
in:
input1: input_datasets
identifier:
tool_id: identifier_collection
in:
input1: fail_identifier_1/out_file1
test_data:
input_datasets:
collection_type: list
elements:
- identifier: fail
value: 1.fastq
type: File
- identifier: success
value: 1.fastq
type: File
""", history_id=history_id, assert_ok=False, wait=False)
self.wait_for_invocation_and_jobs(history_id, job_summary.workflow_id, job_summary.invocation_id, assert_ok=False)
history_contents = self.dataset_populator._get_contents_request(history_id=history_id).json()
first_input = history_contents[1]
assert first_input['history_content_type'] == 'dataset'
paused_dataset = history_contents[-1]
failed_dataset = self.dataset_populator.get_history_dataset_details(history_id, hid=5, assert_ok=False)
assert paused_dataset['state'] == 'paused', paused_dataset
assert failed_dataset['state'] == 'error', failed_dataset
inputs = {"input1": {'values': [{'src': 'hda',
'id': first_input['id']}]
},
"failbool": "false",
"rerun_remap_job_id": failed_dataset['creating_job']}
run_dict = self.dataset_populator.run_tool(tool_id='fail_identifier',
inputs=inputs,
history_id=history_id,
assert_ok=True)
unpaused_dataset = self.dataset_populator.get_history_dataset_details(history_id, wait=True, assert_ok=False)
assert unpaused_dataset['state'] == 'ok'
contents = self.dataset_populator.get_history_dataset_content(history_id, hid=7, assert_ok=False)
assert contents == 'fail\nsuccess\n', contents
replaced_hda_id = run_dict['outputs'][0]['id']
replaced_hda = self.dataset_populator.get_history_dataset_details(history_id, dataset_id=replaced_hda_id, wait=True, assert_ok=False)
assert not replaced_hda['visible'], replaced_hda
[docs] def test_workflow_resume_with_mapped_over_collection_input(self):
# Test that replacement and resume also works if the failed job re-run works on a input DCE
with self.dataset_populator.test_history() as history_id:
job_summary = self._run_jobs("""
class: GalaxyWorkflow
inputs:
input_collection: collection
steps:
- tool_id: collection_creates_list_of_pairs
state:
failbool: true
in:
input1:
source: input_collection
- tool_id: collection_creates_list_of_pairs
state:
failbool: false
in:
input1:
source: 1/list_output
test_data:
input_collection:
collection_type: "list:list:paired"
""", history_id=history_id, assert_ok=False, wait=True)
invocation = self.workflow_populator.get_invocation(job_summary.invocation_id, step_details=True)
# TODO: return steps sorted by order_index ? Why don't we do that ??
invocation['steps'].sort(key=lambda step: step['order_index'])
failed_step = invocation['steps'][1]
assert failed_step['jobs'][0]['state'] == 'error'
failed_hdca_id = failed_step['output_collections']['list_output']['id']
failed_hdca = self.dataset_populator.get_history_collection_details(history_id=history_id, content_id=failed_hdca_id, assert_ok=False)
assert failed_hdca['elements'][0]['object']['elements'][0]['object']['elements'][0]['object']['state'] == 'error'
paused_step = invocation['steps'][2]
# job not created, input in error state
assert paused_step['jobs'][0]['state'] == 'paused'
input_hdca = self.dataset_populator.get_history_collection_details(history_id=history_id, content_id=job_summary.inputs['input_collection']['id'], assert_ok=False)
# now re-run errored job
inputs = {"input1": {'values': [{'src': 'dce',
'id': input_hdca['elements'][0]['id']}]
},
"failbool": "false",
"rerun_remap_job_id": failed_step['jobs'][0]['id']}
run_response = self.dataset_populator.run_tool(
tool_id='collection_creates_list_of_pairs',
inputs=inputs,
history_id=history_id,
assert_ok=True)
assert not run_response["output_collections"][0]["visible"]
self.dataset_populator.wait_for_job(paused_step['jobs'][0]['id'])
invocation = self.workflow_populator.get_invocation(job_summary.invocation_id, step_details=True)
rerun_step = invocation['steps'][1]
assert rerun_step['jobs'][0]['state'] == 'ok'
replaced_hdca = self.dataset_populator.get_history_collection_details(history_id=history_id, content_id=failed_hdca_id, assert_ok=False)
assert replaced_hdca['elements'][0]['object']['elements'][0]['object']['elements'][0]['object']['state'] == 'ok'
[docs] @skip_without_tool('multi_data_optional')
def test_workflow_list_list_multi_data_map_over(self):
# Test that a list:list is reduced to list with a multiple="true" data input
with self.dataset_populator.test_history() as history_id:
workflow_id = self._upload_yaml_workflow("""
class: GalaxyWorkflow
inputs:
input_datasets: collection
steps:
multi_data_optional:
tool_id: multi_data_optional
in:
input1: input_datasets
""")
with self.dataset_populator.test_history() as history_id:
hdca_id = self.dataset_collection_populator.create_list_of_list_in_history(history_id).json()
self.dataset_populator.wait_for_history(history_id, assert_ok=True)
inputs = {
'0': self._ds_entry(hdca_id),
}
invocation_id = self.__invoke_workflow(history_id, workflow_id, inputs)
self.wait_for_invocation_and_jobs(history_id, workflow_id, invocation_id)
output_collection = self.dataset_populator.get_history_collection_details(history_id, hid=6)
assert output_collection['collection_type'] == 'list'
assert output_collection['job_source_type'] == 'ImplicitCollectionJobs'
[docs] @skip_without_tool("cat_list")
@skip_without_tool("collection_creates_pair")
def test_workflow_run_output_collection_mapping(self):
workflow_id = self._upload_yaml_workflow(WORKFLOW_WITH_OUTPUT_COLLECTION_MAPPING)
with self.dataset_populator.test_history() as history_id:
hdca1 = self.dataset_collection_populator.create_list_in_history(history_id, contents=["a\nb\nc\nd\n", "e\nf\ng\nh\n"]).json()
self.dataset_populator.wait_for_history(history_id, assert_ok=True)
inputs = {
'0': self._ds_entry(hdca1),
}
invocation_id = self.__invoke_workflow(history_id, workflow_id, inputs)
self.wait_for_invocation_and_jobs(history_id, workflow_id, invocation_id)
self.assertEqual("a\nc\nb\nd\ne\ng\nf\nh\n", self.dataset_populator.get_history_dataset_content(history_id, hid=0))
[docs] @skip_without_tool("cat_list")
@skip_without_tool("collection_split_on_column")
def test_workflow_run_dynamic_output_collections(self):
with self.dataset_populator.test_history() as history_id:
self._run_jobs(WORKFLOW_WITH_DYNAMIC_OUTPUT_COLLECTION, history_id=history_id, assert_ok=True, wait=True)
details = self.dataset_populator.get_history_dataset_details(history_id, hid=0)
last_item_hid = details["hid"]
assert last_item_hid == 7, f"Expected 7 history items, got {last_item_hid}"
content = self.dataset_populator.get_history_dataset_content(history_id, hid=0)
self.assertEqual("10.0\n30.0\n20.0\n40.0\n", content)
[docs] @skip_without_tool("collection_split_on_column")
@skip_without_tool("min_repeat")
def test_workflow_run_dynamic_output_collections_2(self):
# A more advanced output collection workflow, testing regression of
# https://github.com/galaxyproject/galaxy/issues/776
with self.dataset_populator.test_history() as history_id:
workflow_id = self._upload_yaml_workflow("""
class: GalaxyWorkflow
inputs:
test_input_1: data
test_input_2: data
test_input_3: data
steps:
split_up:
tool_id: collection_split_on_column
in:
input1: test_input_2
min_repeat:
tool_id: min_repeat
in:
queries_0|input: test_input_1
queries2_0|input2: split_up/split_output
""")
hda1 = self.dataset_populator.new_dataset(history_id, content="samp1\t10.0\nsamp2\t20.0\n")
hda2 = self.dataset_populator.new_dataset(history_id, content="samp1\t20.0\nsamp2\t40.0\n")
hda3 = self.dataset_populator.new_dataset(history_id, content="samp1\t30.0\nsamp2\t60.0\n")
self.dataset_populator.wait_for_history(history_id, assert_ok=True)
inputs = {
'0': self._ds_entry(hda1),
'1': self._ds_entry(hda2),
'2': self._ds_entry(hda3),
}
invocation_id = self.__invoke_workflow(history_id, workflow_id, inputs)
self.wait_for_invocation_and_jobs(history_id, workflow_id, invocation_id)
collection_details = self.dataset_populator.get_history_collection_details(history_id, hid=7)
assert collection_details["populated_state"] == "ok"
content = self.dataset_populator.get_history_dataset_content(history_id, hid=11)
self.assertEqual(content.strip(), "samp1\t10.0\nsamp2\t20.0")
[docs] @skip_without_tool("cat")
@skip_without_tool("collection_split_on_column")
def test_workflow_run_dynamic_output_collections_3(self):
# Test a workflow that create a list:list:list followed by a mapping step.
with self.dataset_populator.test_history() as history_id:
workflow_id = self._upload_yaml_workflow("""
class: GalaxyWorkflow
inputs:
text_input1: data
text_input2: data
steps:
cat_inputs:
tool_id: cat1
in:
input1: text_input1
queries_0|input2: text_input2
split_up_1:
tool_id: collection_split_on_column
in:
input1: cat_inputs/out_file1
split_up_2:
tool_id: collection_split_on_column
in:
input1: split_up_1/split_output
cat_output:
tool_id: cat
in:
input1: split_up_2/split_output
""")
hda1 = self.dataset_populator.new_dataset(history_id, content="samp1\t10.0\nsamp2\t20.0\n")
hda2 = self.dataset_populator.new_dataset(history_id, content="samp1\t30.0\nsamp2\t40.0\n")
self.dataset_populator.wait_for_history(history_id, assert_ok=True)
inputs = {
'0': self._ds_entry(hda1),
'1': self._ds_entry(hda2),
}
invocation_id = self.__invoke_workflow(history_id, workflow_id, inputs)
self.wait_for_invocation_and_jobs(history_id, workflow_id, invocation_id)
[docs] @skip_without_tool('column_param')
def test_empty_file_data_column_specified(self):
# Regression test for https://github.com/galaxyproject/galaxy/pull/10981
with self.dataset_populator.test_history() as history_id:
self._run_jobs("""class: GalaxyWorkflow
steps:
empty_output:
tool_id: empty_output
outputs:
out_file1:
change_datatype: tabular
column_param:
tool_id: column_param
in:
input1: empty_output/out_file1
state:
col: 2
col_names: 'B'
""", history_id=history_id)
[docs] @skip_without_tool('column_param_list')
def test_comma_separated_columns(self):
# Regression test for https://github.com/galaxyproject/galaxy/pull/10981
with self.dataset_populator.test_history() as history_id:
self._run_jobs("""class: GalaxyWorkflow
steps:
empty_output:
tool_id: empty_output
outputs:
out_file1:
change_datatype: tabular
column_param_list:
tool_id: column_param_list
in:
input1: empty_output/out_file1
state:
col: '2,3'
col_names: 'B'
""", history_id=history_id)
[docs] @skip_without_tool("column_param_list")
def test_comma_separated_columns_with_trailing_newline(self):
# Tests that workflows with weird tool state continue to run.
# In this case the newline may have been added by the workflow editor
# text field that is used for data_column parameters
with self.dataset_populator.test_history() as history_id:
job_summary = self._run_jobs(
"""class: GalaxyWorkflow
steps:
empty_output:
tool_id: empty_output
outputs:
out_file1:
change_datatype: tabular
column_param_list:
tool_id: column_param_list
in:
input1: empty_output/out_file1
state:
col: '2,3\n'
col_names: 'B\n'
""",
history_id=history_id,
)
job = self.dataset_populator.get_job_details(job_summary.jobs[0]["id"], full=True).json()
assert "col 2,3" in job["command_line"]
assert 'echo "col_names B" >>' in job["command_line"]
[docs] @skip_without_tool("column_param")
def test_runtime_data_column_parameter(self):
with self.dataset_populator.test_history() as history_id:
self._run_jobs("""class: GalaxyWorkflow
inputs:
bed_input: data
steps:
cat1:
tool_id: cat1
in:
input1: bed_input
column_param_list:
tool_id: column_param
in:
input1: cat1/out_file1
state:
col: 9
col_names: notacolumn
test_data:
step_parameters:
'2':
'col': 1
'col_names': 'c1: chr1'
bed_input:
value: 1.bed
file_type: bed
type: File
""", history_id=history_id)
[docs] @skip_without_tool("mapper")
@skip_without_tool("pileup")
def test_workflow_metadata_validation_0(self):
# Testing regression of
# https://github.com/galaxyproject/galaxy/issues/1514
with self.dataset_populator.test_history() as history_id:
self._run_jobs("""
class: GalaxyWorkflow
inputs:
input_fastqs: collection
reference: data
steps:
map_over_mapper:
tool_id: mapper
in:
input1: input_fastqs
reference: reference
pileup:
tool_id: pileup
in:
input1: map_over_mapper/out_file1
reference: reference
test_data:
input_fastqs:
collection_type: list
elements:
- identifier: samp1
value: 1.fastq
type: File
- identifier: samp2
value: 1.fastq
type: File
reference:
value: 1.fasta
type: File
""", history_id=history_id)
[docs] def test_run_subworkflow_simple(self):
with self.dataset_populator.test_history() as history_id:
run_response = self._run_jobs(WORKFLOW_NESTED_SIMPLE, test_data="""
outer_input:
value: 1.bed
type: File
""", history_id=history_id)
content = self.dataset_populator.get_history_dataset_content(history_id)
self.assertEqual("chrX\t152691446\t152691471\tCCDS14735.1_cds_0_0_chrX_152691447_f\t0\t+\nchrX\t152691446\t152691471\tCCDS14735.1_cds_0_0_chrX_152691447_f\t0\t+\n", content)
steps = self.workflow_populator.get_invocation(run_response.invocation_id)['steps']
assert sum(1 for step in steps if step['subworkflow_invocation_id'] is None) == 3
subworkflow_invocation_id = [step['subworkflow_invocation_id'] for step in steps if step['subworkflow_invocation_id']][0]
subworkflow_invocation = self.workflow_populator.get_invocation(subworkflow_invocation_id)
# inner_input should be step 0, random_lines should be step 1, but step order gets lost on python < 3.6
assert [step for step in subworkflow_invocation['steps'] if step['workflow_step_label'] == 'inner_input']
assert [step for step in subworkflow_invocation['steps'] if step['workflow_step_label'] == 'random_lines']
bco = self.workflow_populator.get_biocompute_object(run_response.invocation_id)
self.workflow_populator.validate_biocompute_object(bco)
[docs] @skip_without_tool("random_lines1")
def test_run_subworkflow_runtime_parameters(self):
with self.dataset_populator.test_history() as history_id:
self._run_jobs(WORKFLOW_NESTED_RUNTIME_PARAMETER, test_data="""
step_parameters:
'1':
'1|num_lines': 2
outer_input:
value: 1.bed
type: File
""", history_id=history_id)
content = self.dataset_populator.get_history_dataset_content(history_id)
assert len([x for x in content.split("\n") if x]) == 2
[docs] @skip_without_tool("cat")
def test_run_subworkflow_replacement_parameters(self):
with self.dataset_populator.test_history() as history_id:
test_data = """
replacement_parameters:
replaceme: moocow
outer_input:
value: 1.bed
type: File
"""
self._run_jobs(WORKFLOW_NESTED_REPLACEMENT_PARAMETER, test_data=test_data, history_id=history_id)
details = self.dataset_populator.get_history_dataset_details(history_id)
assert details["name"] == "moocow suffix"
[docs] @skip_without_tool("create_2")
def test_placements_from_text_inputs(self):
with self.dataset_populator.test_history() as history_id:
run_def = """
class: GalaxyWorkflow
inputs: []
steps:
create_2:
tool_id: create_2
state:
sleep_time: 0
outputs:
out_file1:
rename: "${replaceme} name"
out_file2:
rename: "${replaceme} name 2"
test_data:
replacement_parameters:
replaceme: moocow
"""
self._run_jobs(run_def, history_id=history_id)
details = self.dataset_populator.get_history_dataset_details(history_id)
assert details["name"] == "moocow name 2"
run_def = """
class: GalaxyWorkflow
inputs:
replaceme: text
steps:
create_2:
tool_id: create_2
state:
sleep_time: 0
outputs:
out_file1:
rename: "${replaceme} name"
out_file2:
rename: "${replaceme} name 2"
test_data:
replaceme:
value: moocow
type: raw
"""
self._run_jobs(run_def, history_id=history_id)
details = self.dataset_populator.get_history_dataset_details(history_id)
assert details["name"] == "moocow name 2", details["name"]
[docs] @skip_without_tool("random_lines1")
def test_run_runtime_parameters_after_pause(self):
with self.dataset_populator.test_history() as history_id:
workflow_run_description = f"""{WORKFLOW_RUNTIME_PARAMETER_AFTER_PAUSE}
test_data:
step_parameters:
'2':
'num_lines': 2
input1:
value: 1.bed
type: File
"""
job_summary = self._run_jobs(workflow_run_description, history_id=history_id, wait=False)
uploaded_workflow_id, invocation_id = job_summary.workflow_id, job_summary.invocation_id
# Wait for at least one scheduling step.
self._wait_for_invocation_non_new(uploaded_workflow_id, invocation_id)
# Make sure the history didn't enter a failed state in there.
self.dataset_populator.wait_for_history(history_id, assert_ok=True)
# Assert the workflow hasn't finished scheduling, we can be pretty sure we
# are at the pause step in this case then.
self._assert_invocation_non_terminal(uploaded_workflow_id, invocation_id)
# Review the paused steps to allow the workflow to continue.
self.__review_paused_steps(uploaded_workflow_id, invocation_id, order_index=1, action=True)
# Wait for the workflow to finish scheduling and ensure both the invocation
# and the history are in valid states.
invocation_scheduled = self._wait_for_invocation_state(uploaded_workflow_id, invocation_id, 'scheduled')
assert invocation_scheduled, "Workflow state is not scheduled..."
self.dataset_populator.wait_for_history(history_id, assert_ok=True)
content = self.dataset_populator.get_history_dataset_content(history_id)
assert len([x for x in content.split("\n") if x]) == 2
[docs] def test_run_subworkflow_auto_labels(self):
def run_test(workflow_text):
with self.dataset_populator.test_history() as history_id:
test_data = """
outer_input:
value: 1.bed
type: File
"""
job_summary = self._run_jobs(workflow_text, test_data=test_data, history_id=history_id)
assert len(job_summary.jobs) == 4, "4 jobs expected, got %d jobs" % len(job_summary.jobs)
content = self.dataset_populator.get_history_dataset_content(history_id)
self.assertEqual(
"chrX\t152691446\t152691471\tCCDS14735.1_cds_0_0_chrX_152691447_f\t0\t+\nchrX\t152691446\t152691471\tCCDS14735.1_cds_0_0_chrX_152691447_f\t0\t+\n",
content)
run_test(NESTED_WORKFLOW_AUTO_LABELS_MODERN_SYNTAX)
[docs] @skip_without_tool("cat1")
@skip_without_tool("collection_paired_test")
def test_workflow_run_zip_collections(self):
with self.dataset_populator.test_history() as history_id:
workflow_id = self._upload_yaml_workflow("""
class: GalaxyWorkflow
inputs:
test_input_1: data
test_input_2: data
steps:
first_cat:
tool_id: cat1
in:
input1: test_input_1
zip_it:
tool_id: "__ZIP_COLLECTION__"
in:
input_forward: first_cat/out_file1
input_reverse: test_input_2
concat_pair:
tool_id: collection_paired_test
in:
f1: zip_it/output
""")
hda1 = self.dataset_populator.new_dataset(history_id, content="samp1\t10.0\nsamp2\t20.0\n")
hda2 = self.dataset_populator.new_dataset(history_id, content="samp1\t20.0\nsamp2\t40.0\n")
self.dataset_populator.wait_for_history(history_id, assert_ok=True)
inputs = {
'0': self._ds_entry(hda1),
'1': self._ds_entry(hda2),
}
invocation_id = self.__invoke_workflow(history_id, workflow_id, inputs)
self.wait_for_invocation_and_jobs(history_id, workflow_id, invocation_id)
content = self.dataset_populator.get_history_dataset_content(history_id)
self.assertEqual(content.strip(), "samp1\t10.0\nsamp2\t20.0\nsamp1\t20.0\nsamp2\t40.0")
[docs] @skip_without_tool("collection_paired_test")
def test_workflow_flatten(self):
with self.dataset_populator.test_history() as history_id:
self._run_jobs("""
class: GalaxyWorkflow
steps:
nested:
tool_id: collection_creates_dynamic_nested
state:
sleep_time: 0
foo: 'dummy'
flatten:
tool_id: '__FLATTEN__'
state:
input:
$link: nested/list_output
join_identifier: '-'
""", test_data={}, history_id=history_id)
details = self.dataset_populator.get_history_collection_details(history_id, hid=14)
assert details['collection_type'] == "list"
elements = details["elements"]
identifiers = [e['element_identifier'] for e in elements]
assert len(identifiers) == 6
assert "oe1-ie1" in identifiers
[docs] @skip_without_tool("collection_paired_test")
def test_workflow_flatten_with_mapped_over_execution(self):
with self.dataset_populator.test_history() as history_id:
self._run_jobs(r"""
class: GalaxyWorkflow
inputs:
input_fastqs: collection
steps:
split_up:
tool_id: collection_split_on_column
in:
input1: input_fastqs
flatten:
tool_id: '__FLATTEN__'
in:
input: split_up/split_output
join_identifier: '-'
test_data:
input_fastqs:
collection_type: list
elements:
- identifier: samp1
content: "0\n1"
""", history_id=history_id)
history = self._get(f'histories/{history_id}/contents').json()
flattened_collection = history[-1]
assert flattened_collection['history_content_type'] == 'dataset_collection'
assert flattened_collection['collection_type'] == 'list'
assert flattened_collection['element_count'] == 2
nested_collection = self.dataset_populator.get_history_collection_details(history_id, hid=3)
assert nested_collection['collection_type'] == 'list:list'
assert nested_collection['element_count'] == 1
assert nested_collection['elements'][0]['object']['populated']
assert nested_collection['elements'][0]['object']['element_count'] == 2
[docs] @skip_without_tool("cat")
def test_workflow_invocation_report_1(self):
test_data = """
input_1:
value: 1.bed
type: File
"""
with self.dataset_populator.test_history() as history_id:
summary = self._run_jobs("""
class: GalaxyWorkflow
inputs:
input_1: data
outputs:
output_1:
outputSource: first_cat/out_file1
steps:
first_cat:
tool_id: cat
in:
input1: input_1
""", test_data=test_data, history_id=history_id)
workflow_id = summary.workflow_id
invocation_id = summary.invocation_id
report_json = self.workflow_populator.workflow_report_json(workflow_id, invocation_id)
assert "markdown" in report_json
self._assert_has_keys(report_json, "markdown", "render_format")
assert report_json["render_format"] == "markdown"
markdown_content = report_json["markdown"]
assert "## Workflow Outputs" in markdown_content
assert "## Workflow Inputs" in markdown_content
assert "## About This Report" not in markdown_content
[docs] @skip_without_tool("cat")
def test_workflow_invocation_report_custom(self):
with self.dataset_populator.test_history() as history_id:
summary = self._run_jobs(
WORKFLOW_WITH_CUSTOM_REPORT_1,
test_data=WORKFLOW_WITH_CUSTOM_REPORT_1_TEST_DATA,
history_id=history_id
)
workflow_id = summary.workflow_id
invocation_id = summary.invocation_id
downloaded_workflow = self._download_workflow(workflow_id)
assert "report" in downloaded_workflow
report_config = downloaded_workflow["report"]
assert "markdown" in report_config
report_json = self.workflow_populator.workflow_report_json(workflow_id, invocation_id)
assert "markdown" in report_json, f"markdown not in report json {report_json}"
self._assert_has_keys(report_json, "markdown", "render_format")
assert report_json["render_format"] == "markdown"
markdown_content = report_json["markdown"]
assert "## Workflow Outputs" in markdown_content
assert "\n```galaxy\nhistory_dataset_display(history_dataset_id=" in markdown_content
assert "## Workflow Inputs" in markdown_content
assert "## About This Report" in markdown_content
[docs] @skip_without_tool("cat1")
def test_export_invocation_bco(self):
with self.dataset_populator.test_history() as history_id:
summary = self._run_jobs(WORKFLOW_SIMPLE, test_data={"input1": "hello world"}, history_id=history_id)
invocation_id = summary.invocation_id
bco = self.workflow_populator.get_biocompute_object(invocation_id)
self.workflow_populator.validate_biocompute_object(bco)
self.assertEqual(bco['provenance_domain']['name'], "Simple Workflow")
[docs] @skip_without_tool("__APPLY_RULES__")
def test_workflow_run_apply_rules(self):
with self.dataset_populator.test_history() as history_id:
self._run_jobs(WORKFLOW_WITH_RULES_1, history_id=history_id, wait=True, assert_ok=True, round_trip_format_conversion=True)
output_content = self.dataset_populator.get_history_collection_details(history_id, hid=6)
rules_test_data.check_example_2(output_content, self.dataset_populator)
[docs] def test_filter_failed_mapping(self):
with self.dataset_populator.test_history() as history_id:
summary = self._run_jobs("""
class: GalaxyWorkflow
inputs:
input_c: collection
steps:
mixed_collection:
tool_id: exit_code_from_file
state:
input:
$link: input_c
filtered_collection:
tool_id: "__FILTER_FAILED_DATASETS__"
state:
input:
$link: mixed_collection/out_file1
cat:
tool_id: cat1
state:
input1:
$link: filtered_collection
""", test_data="""
input_c:
collection_type: list
elements:
- identifier: i1
content: "0"
- identifier: i2
content: "1"
""", history_id=history_id, wait=True, assert_ok=False)
jobs = summary.jobs
def filter_jobs_by_tool(tool_id):
return [j for j in summary.jobs if j["tool_id"] == tool_id]
assert len(filter_jobs_by_tool("__DATA_FETCH__")) == 1, jobs
assert len(filter_jobs_by_tool("exit_code_from_file")) == 2, jobs
assert len(filter_jobs_by_tool("__FILTER_FAILED_DATASETS__")) == 1, jobs
# Follow proves one job was filtered out of the result of cat1
assert len(filter_jobs_by_tool("cat1")) == 1, jobs
[docs] def test_workflow_request(self):
workflow = self.workflow_populator.load_workflow(name="test_for_queue")
workflow_request, history_id = self._setup_workflow_run(workflow)
url = f"workflows/{workflow_request['workflow_id']}/usage"
del workflow_request["workflow_id"]
run_workflow_response = self._post(url, data=workflow_request)
self._assert_status_code_is(run_workflow_response, 200)
# Give some time for workflow to get scheduled before scanning the history.
time.sleep(5)
self.dataset_populator.wait_for_history(history_id, assert_ok=True)
[docs] def test_workflow_output_dataset(self):
with self.dataset_populator.test_history() as history_id:
summary = self._run_jobs(WORKFLOW_SIMPLE, test_data={"input1": "hello world"}, history_id=history_id)
workflow_id = summary.workflow_id
invocation_id = summary.invocation_id
invocation_response = self._get(f"workflows/{workflow_id}/invocations/{invocation_id}")
self._assert_status_code_is(invocation_response, 200)
invocation = invocation_response.json()
self._assert_has_keys(invocation, "id", "outputs", "output_collections")
assert len(invocation["output_collections"]) == 0
assert len(invocation["outputs"]) == 1
output_content = self.dataset_populator.get_history_dataset_content(history_id, dataset_id=invocation["outputs"]["wf_output_1"]["id"])
assert "hello world" == output_content.strip()
[docs] @skip_without_tool("cat")
def test_workflow_output_dataset_collection(self):
with self.dataset_populator.test_history() as history_id:
summary = self._run_jobs("""
class: GalaxyWorkflow
inputs:
input1:
type: data_collection_input
collection_type: list
outputs:
wf_output_1:
outputSource: first_cat/out_file1
steps:
first_cat:
tool_id: cat
in:
input1: input1
""", test_data="""
input1:
collection_type: list
name: the_dataset_list
elements:
- identifier: el1
value: 1.fastq
type: File
""", history_id=history_id, round_trip_format_conversion=True)
workflow_id = summary.workflow_id
invocation_id = summary.invocation_id
invocation_response = self._get(f"workflows/{workflow_id}/invocations/{invocation_id}")
self._assert_status_code_is(invocation_response, 200)
invocation = invocation_response.json()
self._assert_has_keys(invocation, "id", "outputs", "output_collections")
assert len(invocation["output_collections"]) == 1
assert len(invocation["outputs"]) == 0
output_content = self.dataset_populator.get_history_collection_details(history_id, content_id=invocation["output_collections"]["wf_output_1"]["id"])
self._assert_has_keys(output_content, "id", "elements")
assert output_content["collection_type"] == "list"
elements = output_content["elements"]
assert len(elements) == 1
elements0 = elements[0]
assert elements0["element_identifier"] == "el1"
[docs] def test_workflow_input_as_output(self):
with self.dataset_populator.test_history() as history_id:
summary = self._run_jobs("""
class: GalaxyWorkflow
inputs:
input1: data
text_input: text
outputs:
wf_output_1:
outputSource: input1
wf_output_param:
outputSource: text_input
steps: []
""", test_data={"input1": "hello world", "text_input": {"value": "A text variable", "type": "raw"}}, history_id=history_id)
workflow_id = summary.workflow_id
invocation_id = summary.invocation_id
invocation_response = self._get(f"workflows/{workflow_id}/invocations/{invocation_id}")
self._assert_status_code_is(invocation_response, 200)
invocation = invocation_response.json()
self._assert_has_keys(invocation, "id", "outputs", "output_collections")
assert len(invocation["output_collections"]) == 0
assert len(invocation["outputs"]) == 1
assert len(invocation["output_values"]) == 1
assert "wf_output_param" in invocation["output_values"]
assert invocation["output_values"]["wf_output_param"] == "A text variable", invocation["output_values"]
output_content = self.dataset_populator.get_history_dataset_content(history_id, content_id=invocation["outputs"]["wf_output_1"]["id"])
assert output_content == "hello world\n"
[docs] def test_subworkflow_output_as_output(self):
with self.dataset_populator.test_history() as history_id:
summary = self._run_jobs("""
class: GalaxyWorkflow
inputs:
input1: data
outputs:
wf_output_1:
outputSource: nested_workflow/inner_output
steps:
nested_workflow:
run:
class: GalaxyWorkflow
inputs:
inner_input: data
outputs:
inner_output:
outputSource: inner_input
steps: []
in:
inner_input: input1
""", test_data={"input1": "hello world"}, history_id=history_id)
workflow_id = summary.workflow_id
invocation_id = summary.invocation_id
invocation_response = self._get(f"workflows/{workflow_id}/invocations/{invocation_id}")
self._assert_status_code_is(invocation_response, 200)
invocation = invocation_response.json()
self._assert_has_keys(invocation, "id", "outputs", "output_collections")
assert len(invocation["output_collections"]) == 0
assert len(invocation["outputs"]) == 1
output_content = self.dataset_populator.get_history_dataset_content(history_id, content_id=invocation["outputs"]["wf_output_1"]["id"])
assert output_content == "hello world\n"
[docs] @skip_without_tool("cat")
def test_workflow_input_mapping(self):
with self.dataset_populator.test_history() as history_id:
summary = self._run_jobs("""
class: GalaxyWorkflow
inputs:
input1: data
outputs:
wf_output_1:
outputSource: first_cat/out_file1
steps:
first_cat:
tool_id: cat
in:
input1: input1
""", test_data="""
input1:
collection_type: list
name: the_dataset_list
elements:
- identifier: el1
value: 1.fastq
type: File
- identifier: el2
value: 1.fastq
type: File
""", history_id=history_id)
workflow_id = summary.workflow_id
invocation_id = summary.invocation_id
invocation_response = self._get(f"workflows/{workflow_id}/invocations/{invocation_id}")
self._assert_status_code_is(invocation_response, 200)
invocation = invocation_response.json()
self._assert_has_keys(invocation, "id", "outputs", "output_collections")
assert len(invocation["output_collections"]) == 1
assert len(invocation["outputs"]) == 0
output_content = self.dataset_populator.get_history_collection_details(history_id, content_id=invocation["output_collections"]["wf_output_1"]["id"])
self._assert_has_keys(output_content, "id", "elements")
elements = output_content["elements"]
assert len(elements) == 2
elements0 = elements[0]
assert elements0["element_identifier"] == "el1"
[docs] @skip_without_tool("collection_creates_pair")
def test_workflow_run_input_mapping_with_output_collections(self):
with self.dataset_populator.test_history() as history_id:
summary = self._run_jobs("""
class: GalaxyWorkflow
inputs:
text_input: data
outputs:
wf_output_1:
outputSource: split_up/paired_output
steps:
split_up:
tool_id: collection_creates_pair
in:
input1: text_input
""", test_data="""
text_input:
collection_type: list
name: the_dataset_list
elements:
- identifier: el1
value: 1.fastq
type: File
- identifier: el2
value: 1.fastq
type: File
""", history_id=history_id)
workflow_id = summary.workflow_id
invocation_id = summary.invocation_id
invocation_response = self._get(f"workflows/{workflow_id}/invocations/{invocation_id}")
self._assert_status_code_is(invocation_response, 200)
invocation = invocation_response.json()
self._assert_has_keys(invocation, "id", "outputs", "output_collections")
assert len(invocation["output_collections"]) == 1
assert len(invocation["outputs"]) == 0
output_content = self.dataset_populator.get_history_collection_details(history_id, content_id=invocation["output_collections"]["wf_output_1"]["id"])
self._assert_has_keys(output_content, "id", "elements")
assert output_content["collection_type"] == "list:paired", output_content
elements = output_content["elements"]
assert len(elements) == 2
elements0 = elements[0]
assert elements0["element_identifier"] == "el1"
self.wait_for_invocation_and_jobs(history_id, workflow_id, invocation_id)
jobs_summary_response = self._get(f"workflows/{workflow_id}/invocations/{invocation_id}/jobs_summary")
self._assert_status_code_is(jobs_summary_response, 200)
jobs_summary = jobs_summary_response.json()
assert 'states' in jobs_summary
invocation_states = jobs_summary['states']
assert invocation_states and 'ok' in invocation_states, jobs_summary
assert invocation_states['ok'] == 2, jobs_summary
assert jobs_summary['model'] == 'WorkflowInvocation', jobs_summary
jobs_summary_response = self._get(f"workflows/{workflow_id}/invocations/{invocation_id}/step_jobs_summary")
self._assert_status_code_is(jobs_summary_response, 200)
jobs_summary = jobs_summary_response.json()
assert len(jobs_summary) == 1
collection_summary = jobs_summary[0]
assert 'states' in collection_summary
collection_states = collection_summary['states']
assert collection_states and 'ok' in collection_states, collection_states
assert collection_states['ok'] == 2, collection_summary
assert collection_summary['model'] == 'ImplicitCollectionJobs', collection_summary
[docs] def test_workflow_run_input_mapping_with_subworkflows(self):
with self.dataset_populator.test_history() as history_id:
test_data = """
outer_input:
collection_type: list
name: the_dataset_list
elements:
- identifier: el1
value: 1.fastq
type: File
- identifier: el2
value: 1.fastq
type: File
"""
summary = self._run_jobs(WORKFLOW_NESTED_SIMPLE, test_data=test_data, history_id=history_id)
workflow_id = summary.workflow_id
invocation_id = summary.invocation_id
invocation_response = self._get(f"workflows/{workflow_id}/invocations/{invocation_id}")
self._assert_status_code_is(invocation_response, 200)
invocation_response = self._get(f"workflows/{workflow_id}/invocations/{invocation_id}")
self._assert_status_code_is(invocation_response, 200)
invocation = invocation_response.json()
self._assert_has_keys(invocation, "id", "outputs", "output_collections")
assert len(invocation["output_collections"]) == 1, invocation
assert len(invocation["outputs"]) == 0
output_content = self.dataset_populator.get_history_collection_details(history_id, content_id=invocation["output_collections"]["outer_output"]["id"])
self._assert_has_keys(output_content, "id", "elements")
assert output_content["collection_type"] == "list", output_content
elements = output_content["elements"]
assert len(elements) == 2
elements0 = elements[0]
assert elements0["element_identifier"] == "el1"
[docs] @skip_without_tool("cat_list")
@skip_without_tool("random_lines1")
@skip_without_tool("split")
def test_subworkflow_recover_mapping_1(self):
# This test case tests an outer workflow continues to scheduling and handle
# collection mapping properly after the last step of a subworkflow requires delayed
# evaluation. Testing rescheduling and propagating connections within a subworkflow
# is handled by the next test case.
with self.dataset_populator.test_history() as history_id:
self._run_jobs("""
class: GalaxyWorkflow
inputs:
outer_input: data
outputs:
outer_output:
outputSource: second_cat/out_file1
steps:
first_cat:
tool_id: cat1
in:
input1: outer_input
nested_workflow:
run:
class: GalaxyWorkflow
inputs:
inner_input: data
outputs:
workflow_output:
outputSource: random_lines/out_file1
steps:
random_lines:
tool_id: random_lines1
state:
num_lines: 2
input:
$link: inner_input
seed_source:
seed_source_selector: set_seed
seed: asdf
in:
inner_input: first_cat/out_file1
split:
tool_id: split
in:
input1: nested_workflow/workflow_output
second_cat:
tool_id: cat_list
in:
input1: split/output
test_data:
outer_input:
value: 1.bed
type: File
""", history_id=history_id, wait=True, round_trip_format_conversion=True)
self.assertEqual("chr6\t108722976\t108723115\tCCDS5067.1_cds_0_0_chr6_108722977_f\t0\t+\nchrX\t152691446\t152691471\tCCDS14735.1_cds_0_0_chrX_152691447_f\t0\t+\n", self.dataset_populator.get_history_dataset_content(history_id))
# self.assertEqual("chr16\t142908\t143003\tCCDS10397.1_cds_0_0_chr16_142909_f\t0\t+\nchrX\t152691446\t152691471\tCCDS14735.1_cds_0_0_chrX_152691447_f\t0\t+\n", self.dataset_populator.get_history_dataset_content(history_id))
[docs] @skip_without_tool("cat_list")
@skip_without_tool("random_lines1")
@skip_without_tool("split")
def test_subworkflow_recover_mapping_2(self):
# Like the above test case, this test case tests an outer workflow continues to
# schedule and handle collection mapping properly after a subworkflow needs to be
# delayed, but this also tests recovering and handling scheduling within the subworkflow
# since the delayed step (split) isn't the last step of the subworkflow.
with self.dataset_populator.test_history() as history_id:
self._run_jobs("""
class: GalaxyWorkflow
inputs:
outer_input: data
outputs:
outer_output:
outputSource: second_cat/out_file1
steps:
first_cat:
tool_id: cat1
in:
input1: outer_input
nested_workflow:
run:
class: GalaxyWorkflow
inputs:
inner_input: data
outputs:
workflow_output:
outputSource: inner_cat/out_file1
steps:
random_lines:
tool_id: random_lines1
in:
input: inner_input
num_lines:
default: 2
seed_source|seed_source_selector:
default: set_seed
seed_source|seed:
default: asdf
split:
tool_id: split
in:
input1: random_lines/out_file1
inner_cat:
tool_id: cat1
in:
input1: split/output
in:
inner_input: first_cat/out_file1
second_cat:
tool_id: cat_list
in:
input1: nested_workflow/workflow_output
""", test_data="""
outer_input:
value: 1.bed
type: File
""", history_id=history_id, wait=True, round_trip_format_conversion=True)
self.assertEqual("chr6\t108722976\t108723115\tCCDS5067.1_cds_0_0_chr6_108722977_f\t0\t+\nchrX\t152691446\t152691471\tCCDS14735.1_cds_0_0_chrX_152691447_f\t0\t+\n", self.dataset_populator.get_history_dataset_content(history_id))
[docs] @skip_without_tool("cat_list")
@skip_without_tool("random_lines1")
@skip_without_tool("split")
def test_recover_mapping_in_subworkflow(self):
with self.dataset_populator.test_history() as history_id:
self._run_jobs("""
class: GalaxyWorkflow
inputs:
outer_input: data
outputs:
outer_output:
outputSource: second_cat/out_file1
steps:
first_cat:
tool_id: cat1
in:
input1: outer_input
nested_workflow:
run:
class: GalaxyWorkflow
inputs:
inner_input: data
outputs:
workflow_output:
outputSource: split/output
steps:
random_lines:
tool_id: random_lines1
state:
num_lines: 2
input:
$link: inner_input
seed_source:
seed_source_selector: set_seed
seed: asdf
split:
tool_id: split
in:
input1: random_lines/out_file1
in:
inner_input: first_cat/out_file1
second_cat:
tool_id: cat_list
in:
input1: nested_workflow/workflow_output
""", test_data="""
outer_input:
value: 1.bed
type: File
""", history_id=history_id, wait=True, round_trip_format_conversion=True)
self.assertEqual("chr6\t108722976\t108723115\tCCDS5067.1_cds_0_0_chr6_108722977_f\t0\t+\nchrX\t152691446\t152691471\tCCDS14735.1_cds_0_0_chrX_152691447_f\t0\t+\n", self.dataset_populator.get_history_dataset_content(history_id))
[docs] @skip_without_tool("empty_list")
@skip_without_tool("count_list")
@skip_without_tool("random_lines1")
def test_empty_list_mapping(self):
with self.dataset_populator.test_history() as history_id:
self._run_jobs("""
class: GalaxyWorkflow
inputs:
input1: data
outputs:
count_list:
outputSource: count_list/out_file1
steps:
empty_list:
tool_id: empty_list
in:
input1: input1
random_lines:
tool_id: random_lines1
state:
num_lines: 2
input:
$link: empty_list/output
seed_source:
seed_source_selector: set_seed
seed: asdf
count_list:
tool_id: count_list
in:
input1: random_lines/out_file1
""", test_data="""
input1:
value: 1.bed
type: File
""", history_id=history_id, wait=True)
self.assertEqual("0\n", self.dataset_populator.get_history_dataset_content(history_id))
[docs] @skip_without_tool("random_lines1")
def test_change_datatype_collection_map_over(self):
with self.dataset_populator.test_history() as history_id:
jobs_summary = self._run_jobs("""
class: GalaxyWorkflow
inputs:
text_input1: collection
steps:
map_over:
tool_id: random_lines1
in:
input: text_input1
outputs:
out_file1:
change_datatype: csv
""", test_data="""
text_input1:
collection_type: "list:paired"
""", history_id=history_id)
hdca = self.dataset_populator.get_history_collection_details(history_id=jobs_summary.history_id, hid=4)
assert hdca['collection_type'] == 'list:paired'
assert len(hdca['elements'][0]['object']["elements"]) == 2
forward, reverse = hdca['elements'][0]['object']["elements"]
assert forward['object']['file_ext'] == 'csv'
assert reverse['object']['file_ext'] == 'csv'
[docs] @skip_without_tool("collection_type_source_map_over")
def test_mapping_and_subcollection_mapping(self):
with self.dataset_populator.test_history() as history_id:
jobs_summary = self._run_jobs("""
class: GalaxyWorkflow
inputs:
text_input1: collection
steps:
map_over:
tool_id: collection_type_source_map_over
in:
input_collect: text_input1
""", test_data="""
text_input1:
collection_type: "list:paired"
""", history_id=history_id)
hdca = self.dataset_populator.get_history_collection_details(history_id=jobs_summary.history_id, hid=1)
assert hdca['collection_type'] == 'list:paired'
assert len(hdca['elements'][0]['object']["elements"]) == 2
[docs] @skip_without_tool("empty_list")
@skip_without_tool("count_multi_file")
@skip_without_tool("random_lines1")
def test_empty_list_reduction(self):
with self.dataset_populator.test_history() as history_id:
self._run_jobs("""
class: GalaxyWorkflow
inputs:
input1: data
outputs:
count_multi_file:
outputSource: count_multi_file/out_file1
steps:
empty_list:
tool_id: empty_list
in:
input1: input1
random_lines:
tool_id: random_lines1
state:
num_lines: 2
input:
$link: empty_list/output
seed_source:
seed_source_selector: set_seed
seed: asdf
count_multi_file:
tool_id: count_multi_file
in:
input1: random_lines/out_file1
""", test_data="""
input1:
value: 1.bed
type: File
""", history_id=history_id, wait=True, round_trip_format_conversion=True)
self.assertEqual("0\n", self.dataset_populator.get_history_dataset_content(history_id))
[docs] @skip_without_tool("cat")
def test_cancel_new_workflow_when_history_deleted(self):
with self.dataset_populator.test_history() as history_id:
# Invoke a workflow with a pause step.
uploaded_workflow_id, invocation_id = self._invoke_paused_workflow(history_id)
# There is no pause of anything in here, so likely the invocation is
# is still in a new state. If it isn't that is fine, continue with the
# test it will just happen to test the same thing as below.
# Wait for all the datasets to complete, make sure the workflow invocation
# is not complete.
self._assert_invocation_non_terminal(uploaded_workflow_id, invocation_id)
self._delete(f"histories/{history_id}")
invocation_cancelled = self._wait_for_invocation_state(uploaded_workflow_id, invocation_id, 'cancelled')
assert invocation_cancelled, "Workflow state is not cancelled..."
[docs] @skip_without_tool("cat")
def test_cancel_ready_workflow_when_history_deleted(self):
# Same as previous test but make sure invocation isn't a new state before
# cancelling.
with self.dataset_populator.test_history() as history_id:
# Invoke a workflow with a pause step.
uploaded_workflow_id, invocation_id = self._invoke_paused_workflow(history_id)
# Wait for at least one scheduling step.
self._wait_for_invocation_non_new(uploaded_workflow_id, invocation_id)
# Wait for all the datasets to complete, make sure the workflow invocation
# is not complete.
self._assert_invocation_non_terminal(uploaded_workflow_id, invocation_id)
self._delete(f"histories/{history_id}")
invocation_cancelled = self._wait_for_invocation_state(uploaded_workflow_id, invocation_id, 'cancelled')
assert invocation_cancelled, "Workflow state is not cancelled..."
[docs] @skip_without_tool("cat")
def test_workflow_pause(self):
with self.dataset_populator.test_history() as history_id:
# Invoke a workflow with a pause step.
uploaded_workflow_id, invocation_id = self._invoke_paused_workflow(history_id)
# Wait for at least one scheduling step.
self._wait_for_invocation_non_new(uploaded_workflow_id, invocation_id)
# Make sure the history didn't enter a failed state in there.
self.dataset_populator.wait_for_history(history_id, assert_ok=True)
# Assert the workflow hasn't finished scheduling, we can be pretty sure we
# are at the pause step in this case then.
self._assert_invocation_non_terminal(uploaded_workflow_id, invocation_id)
# Review the paused steps to allow the workflow to continue.
self.__review_paused_steps(uploaded_workflow_id, invocation_id, order_index=2, action=True)
# Wait for the workflow to finish scheduling and ensure both the invocation
# and the history are in valid states.
invocation_scheduled = self._wait_for_invocation_state(uploaded_workflow_id, invocation_id, 'scheduled')
assert invocation_scheduled, "Workflow state is not scheduled..."
self.dataset_populator.wait_for_history(history_id, assert_ok=True)
[docs] @skip_without_tool("cat")
def test_workflow_pause_cancel(self):
with self.dataset_populator.test_history() as history_id:
# Invoke a workflow with a pause step.
uploaded_workflow_id, invocation_id = self._invoke_paused_workflow(history_id)
# Wait for at least one scheduling step.
self._wait_for_invocation_non_new(uploaded_workflow_id, invocation_id)
# Make sure the history didn't enter a failed state in there.
self.dataset_populator.wait_for_history(history_id, assert_ok=True)
# Assert the workflow hasn't finished scheduling, we can be pretty sure we
# are at the pause step in this case then.
self._assert_invocation_non_terminal(uploaded_workflow_id, invocation_id)
# Review the paused workflow and cancel it at the paused step.
self.__review_paused_steps(uploaded_workflow_id, invocation_id, order_index=2, action=False)
# Ensure the workflow eventually becomes cancelled.
invocation_cancelled = self._wait_for_invocation_state(uploaded_workflow_id, invocation_id, 'cancelled')
assert invocation_cancelled, "Workflow state is not cancelled..."
[docs] @skip_without_tool("head")
def test_workflow_map_reduce_pause(self):
with self.dataset_populator.test_history() as history_id:
workflow = self.workflow_populator.load_workflow_from_resource("test_workflow_map_reduce_pause")
uploaded_workflow_id = self.workflow_populator.create_workflow(workflow)
hda1 = self.dataset_populator.new_dataset(history_id, content="reviewed\nunreviewed")
hdca1 = self.dataset_collection_populator.create_list_in_history(history_id, contents=["1\n2\n3", "4\n5\n6"]).json()
index_map = {
'0': self._ds_entry(hda1),
'1': self._ds_entry(hdca1),
}
invocation_id = self.__invoke_workflow(history_id, uploaded_workflow_id, index_map)
# Wait for at least one scheduling step.
self._wait_for_invocation_non_new(uploaded_workflow_id, invocation_id)
# Make sure the history didn't enter a failed state in there.
self.dataset_populator.wait_for_history(history_id, assert_ok=True)
# Assert the workflow hasn't finished scheduling, we can be pretty sure we
# are at the pause step in this case then.
self._assert_invocation_non_terminal(uploaded_workflow_id, invocation_id)
self.__review_paused_steps(uploaded_workflow_id, invocation_id, order_index=4, action=True)
self.wait_for_invocation_and_jobs(history_id, uploaded_workflow_id, invocation_id)
invocation = self._invocation_details(uploaded_workflow_id, invocation_id)
assert invocation['state'] == 'scheduled'
self.assertEqual("reviewed\n1\nreviewed\n4\n", self.dataset_populator.get_history_dataset_content(history_id))
[docs] @skip_without_tool("cat")
def test_cancel_workflow_invocation(self):
with self.dataset_populator.test_history() as history_id:
# Invoke a workflow with a pause step.
uploaded_workflow_id, invocation_id = self._invoke_paused_workflow(history_id)
# Wait for at least one scheduling step.
self._wait_for_invocation_non_new(uploaded_workflow_id, invocation_id)
# Make sure the history didn't enter a failed state in there.
self.dataset_populator.wait_for_history(history_id, assert_ok=True)
# Assert the workflow hasn't finished scheduling, we can be pretty sure we
# are at the pause step in this case then.
self._assert_invocation_non_terminal(uploaded_workflow_id, invocation_id)
invocation_url = self._api_url(f"workflows/{uploaded_workflow_id}/usage/{invocation_id}", use_key=True)
delete_response = delete(invocation_url)
self._assert_status_code_is(delete_response, 200)
invocation = self._invocation_details(uploaded_workflow_id, invocation_id)
assert invocation['state'] == 'cancelled'
[docs] @skip_without_tool("cat")
def test_pause_outputs_with_deleted_inputs(self):
self._deleted_inputs_workflow(purge=False)
[docs] @skip_without_tool("cat")
def test_error_outputs_with_purged_inputs(self):
self._deleted_inputs_workflow(purge=True)
def _deleted_inputs_workflow(self, purge):
# We run a workflow on a collection with a deleted element.
with self.dataset_populator.test_history() as history_id:
workflow_id = self._upload_yaml_workflow("""
class: GalaxyWorkflow
inputs:
input1:
type: collection
collection_type: list
steps:
first_cat:
tool_id: cat
in:
input1: input1
second_cat:
tool_id: cat
in:
input1: first_cat/out_file1
""")
DELETED = 0
PAUSED_1 = 3
PAUSED_2 = 5
hdca1 = self.dataset_collection_populator.create_list_in_history(history_id,
contents=[("sample1-1", "1 2 3")]).json()
self.dataset_populator.wait_for_history(history_id, assert_ok=True)
deleted_id = hdca1['elements'][DELETED]['object']['id']
r = self._delete(f"histories/{history_id}/contents/{deleted_id}?purge={purge}")
label_map = {"input1": self._ds_entry(hdca1)}
workflow_request = dict(
history=f"hist_id={history_id}",
workflow_id=workflow_id,
ds_map=self._build_ds_map(workflow_id, label_map),
)
r = self._post("workflows", data=workflow_request)
self._assert_status_code_is(r, 200)
# If this starts failing we may have prevented running workflows on collections with deleted members,
# in which case we can disable this test.
self.dataset_populator.wait_for_history_jobs(history_id, assert_ok=False)
contents = self.__history_contents(history_id)
assert contents[DELETED]['deleted']
state = 'error' if purge else 'paused'
assert contents[PAUSED_1]['state'] == state
assert contents[PAUSED_2]['state'] == 'paused'
[docs] def test_run_with_implicit_connection(self):
with self.dataset_populator.test_history() as history_id:
run_summary = self._run_jobs("""
class: GalaxyWorkflow
inputs:
test_input: data
steps:
first_cat:
tool_id: cat1
in:
input1: test_input
the_pause:
type: pause
in:
input: first_cat/out_file1
second_cat:
tool_id: cat1
in:
input1: the_pause
third_cat:
tool_id: random_lines1
in:
$step: second_cat
state:
num_lines: 1
input:
$link: test_input
seed_source:
seed_source_selector: set_seed
seed: asdf
""", test_data={"test_input": "hello world"}, history_id=history_id, wait=False, round_trip_format_conversion=True)
history_id = run_summary.history_id
workflow_id = run_summary.workflow_id
invocation_id = run_summary.invocation_id
# Wait for first two jobs to be scheduled - upload and first cat.
wait_on(lambda: len(self._history_jobs(history_id)) >= 2 or None, "history jobs")
self.dataset_populator.wait_for_history(history_id, assert_ok=True)
invocation = self._invocation_details(workflow_id, invocation_id)
assert invocation['state'] != 'scheduled', invocation
# Expect two jobs - the upload and first cat. randomlines shouldn't run
# it is implicitly dependent on second cat.
self._assert_history_job_count(history_id, 2)
self.__review_paused_steps(workflow_id, invocation_id, order_index=2, action=True)
self.wait_for_invocation_and_jobs(history_id, workflow_id, invocation_id)
self._assert_history_job_count(history_id, 4)
[docs] def test_run_with_optional_data_specified_to_multi_data(self):
with self.dataset_populator.test_history() as history_id:
self._run_jobs(WORKFLOW_OPTIONAL_TRUE_INPUT_DATA, test_data="""
input1:
value: 1.bed
type: File
""", history_id=history_id, wait=True, assert_ok=True)
content = self.dataset_populator.get_history_dataset_content(history_id)
assert "CCDS989.1_cds_0_0_chr1_147962193_r" in content
[docs] def test_run_with_optional_data_unspecified_to_multi_data(self):
with self.dataset_populator.test_history() as history_id:
self._run_jobs(WORKFLOW_OPTIONAL_TRUE_INPUT_DATA, test_data={}, history_id=history_id, wait=True, assert_ok=True)
content = self.dataset_populator.get_history_dataset_content(history_id)
assert "No input selected" in content
[docs] def test_run_with_non_optional_data_unspecified_fails_invocation(self):
with self.dataset_populator.test_history() as history_id:
error = self._run_jobs(WORKFLOW_OPTIONAL_FALSE_INPUT_DATA, test_data={}, history_id=history_id, wait=False, assert_ok=False, expected_response=400)
self._assert_failed_on_non_optional_input(error, "input1")
[docs] def test_run_with_optional_collection_specified(self):
with self.dataset_populator.test_history() as history_id:
self._run_jobs(WORKFLOW_OPTIONAL_TRUE_INPUT_COLLECTION, test_data="""
input1:
collection_type: paired
name: the_dataset_pair
elements:
- identifier: forward
value: 1.fastq
type: File
- identifier: reverse
value: 1.fastq
type: File
""", history_id=history_id, wait=True, assert_ok=True)
content = self.dataset_populator.get_history_dataset_content(history_id)
assert "GAATTGATCAGGACATAGGACAACTGTAGGCACCAT" in content
[docs] def test_run_with_optional_collection_unspecified(self):
with self.dataset_populator.test_history() as history_id:
self._run_jobs(WORKFLOW_OPTIONAL_TRUE_INPUT_COLLECTION, test_data={}, history_id=history_id, wait=True, assert_ok=True)
content = self.dataset_populator.get_history_dataset_content(history_id)
assert "No input specified." in content
[docs] def test_run_with_non_optional_collection_unspecified_fails_invocation(self):
with self.dataset_populator.test_history() as history_id:
error = self._run_jobs(WORKFLOW_OPTIONAL_FALSE_INPUT_COLLECTION, test_data={}, history_id=history_id, wait=False, assert_ok=False, expected_response=400)
self._assert_failed_on_non_optional_input(error, "input1")
def _assert_failed_on_non_optional_input(self, error, input_name):
assert "err_msg" in error
err_msg = error["err_msg"]
assert input_name in err_msg
assert "is not optional and no input" in err_msg
[docs] def test_run_with_validated_parameter_connection_optional(self):
with self.dataset_populator.test_history() as history_id:
run_summary = self._run_jobs("""
class: GalaxyWorkflow
inputs:
text_input: text
steps:
validation:
tool_id: validation_repeat
state:
r2:
- text:
$link: text_input
""", test_data="""
text_input:
value: "abd"
type: raw
""", history_id=history_id, wait=True, round_trip_format_conversion=True)
self.wait_for_invocation_and_jobs(history_id, run_summary.workflow_id, run_summary.invocation_id)
jobs = self._history_jobs(history_id)
assert len(jobs) == 1
[docs] def test_run_with_int_parameter(self):
with self.dataset_populator.test_history() as history_id:
failed = False
try:
self._run_jobs(WORKFLOW_PARAMETER_INPUT_INTEGER_REQUIRED, test_data="""
data_input:
value: 1.bed
type: File
""", history_id=history_id, wait=True, assert_ok=True)
except AssertionError as e:
assert '(int_input) is not optional' in str(e)
failed = True
assert failed
run_response = self._run_jobs(WORKFLOW_PARAMETER_INPUT_INTEGER_REQUIRED, test_data="""
data_input:
value: 1.bed
type: File
int_input:
value: 1
type: raw
""", history_id=history_id, wait=True, assert_ok=True)
self.dataset_populator.wait_for_history(history_id, assert_ok=True)
content = self.dataset_populator.get_history_dataset_content(history_id)
assert len(content.splitlines()) == 1, content
invocation = self.workflow_populator.get_invocation(run_response.invocation_id)
assert invocation['input_step_parameters']['int_input']['parameter_value'] == 1
run_response = self._run_jobs(WORKFLOW_PARAMETER_INPUT_INTEGER_OPTIONAL, test_data="""
data_input:
value: 1.bed
type: File
""", history_id=history_id, wait=True, assert_ok=True)
invocation = self.workflow_populator.get_invocation(run_response.invocation_id)
# Optional step parameter without default value will not be recorded.
assert 'int_input' not in invocation['input_step_parameters']
[docs] def test_run_with_int_parameter_nested(self):
with self.dataset_populator.test_history() as history_id:
workflow = self.workflow_populator.load_workflow_from_resource("test_subworkflow_with_integer_input")
workflow_id = self.workflow_populator.create_workflow(workflow)
hda = self.dataset_populator.new_dataset(history_id, content="1 2 3")
workflow_request = {
'history_id': history_id,
'workflow_id': workflow_id,
'inputs_by': 'name',
'inputs': json.dumps({
'input_dataset': {'src': 'hda', 'id': hda['id']},
'int_parameter': 1,
})
}
invocation_response = self.workflow_populator.invoke_workflow_raw(workflow_id, workflow_request)
assert invocation_response.status_code == 200, invocation_response.text
self.workflow_populator.wait_for_invocation(workflow_id, invocation_response.json()['id'])
[docs] def test_run_with_validated_parameter_connection_default_values(self):
with self.dataset_populator.test_history() as history_id:
self._run_jobs(WORKFLOW_PARAMETER_INPUT_INTEGER_DEFAULT, test_data="""
data_input:
value: 1.bed
type: File
""", history_id=history_id, wait=True, assert_ok=True)
self.dataset_populator.wait_for_history(history_id, assert_ok=True)
content = self.dataset_populator.get_history_dataset_content(history_id)
assert len(content.splitlines()) == 3, content
[docs] def test_run_with_validated_parameter_connection_invalid(self):
with self.dataset_populator.test_history() as history_id:
self._run_jobs("""
class: GalaxyWorkflow
inputs:
text_input: text
steps:
validation:
tool_id: validation_repeat
state:
r2:
- text:
$link: text_input
""", test_data="""
text_input:
value: ""
type: raw
""", history_id=history_id, wait=True, assert_ok=False)
[docs] def test_run_with_text_input_connection(self):
with self.dataset_populator.test_history() as history_id:
self._run_jobs("""
class: GalaxyWorkflow
inputs:
data_input: data
text_input: text
steps:
randomlines:
tool_id: random_lines1
state:
num_lines: 1
input:
$link: data_input
seed_source:
seed_source_selector: set_seed
seed:
$link: text_input
""", test_data="""
data_input:
value: 1.bed
type: File
text_input:
value: asdf
type: raw
""", history_id=history_id)
self.dataset_populator.wait_for_history(history_id, assert_ok=True)
content = self.dataset_populator.get_history_dataset_content(history_id)
self.assertEqual("chrX\t152691446\t152691471\tCCDS14735.1_cds_0_0_chrX_152691447_f\t0\t+\n", content)
[docs] def test_run_with_numeric_input_connection(self):
history_id = self.dataset_populator.new_history()
self._run_jobs("""
class: GalaxyWorkflow
steps:
- label: forty_two
tool_id: expression_forty_two
state: {}
- label: consume_expression_parameter
tool_id: cheetah_casting
state:
floattest: 3.14
inttest:
$link: forty_two/out1
test_data: {}
""", history_id=history_id)
self.dataset_populator.wait_for_history(history_id, assert_ok=True)
content = self.dataset_populator.get_history_dataset_content(history_id)
lines = content.split("\n")
assert len(lines) == 4
str_43 = lines[0]
str_4point14 = lines[2]
assert lines[3] == ""
assert int(str_43) == 43
assert abs(float(str_4point14) - 4.14) < .0001
[docs] @skip_without_tool("param_value_from_file")
def test_expression_tool_map_over(self):
history_id = self.dataset_populator.new_history()
self._run_jobs("""
class: GalaxyWorkflow
inputs:
text_input1: collection
steps:
- label: param_out
tool_id: param_value_from_file
in:
input1: text_input1
- label: consume_expression_parameter
tool_id: validation_default
in:
input1: param_out/text_param
outputs:
out_file1:
rename: "replaced_param_collection"
test_data:
text_input1:
collection_type: list
elements:
- identifier: A
content: A
- identifier: B
content: B
""", history_id=history_id)
history_contents = self._get(f'histories/{history_id}/contents').json()
collection = [c for c in history_contents if c['history_content_type'] == 'dataset_collection' and c['name'] == 'replaced_param_collection'][0]
collection_details = self._get(collection['url']).json()
assert collection_details['element_count'] == 2
elements = collection_details['elements']
assert elements[0]['element_identifier'] == 'A'
assert elements[1]['element_identifier'] == 'B'
element_a_content = self.dataset_populator.get_history_dataset_content(history_id, dataset=elements[0]['object'])
element_b_content = self.dataset_populator.get_history_dataset_content(history_id, dataset=elements[1]['object'])
assert element_a_content.strip() == 'A'
assert element_b_content.strip() == 'B'
[docs] @skip_without_tool('create_input_collection')
def test_workflow_optional_input_text_parameter_reevaluation(self):
with self.dataset_populator.test_history() as history_id:
self._run_jobs("""
class: GalaxyWorkflow
inputs:
text_input:
type: text
optional: true
default: ''
steps:
create_collection:
tool_id: create_input_collection
nested_workflow:
in:
inner_input: create_collection/output
inner_text_input: text_input
run:
class: GalaxyWorkflow
inputs:
inner_input:
type: data_collection_input
inner_text_input:
type: text
optional: true
default: ''
steps:
apply:
tool_id: __APPLY_RULES__
in:
input: inner_input
state:
rules:
rules:
- type: add_column_metadata
value: identifier0
mapping:
- type: list_identifiers
columns: [0]
echo:
cat1:
in:
input1: apply/output
outputs:
out_file1:
rename: "#{inner_text_input} suffix"
""", history_id=history_id)
[docs] @skip_without_tool('cat1')
def test_workflow_rerun_with_use_cached_job(self):
workflow = self.workflow_populator.load_workflow(name="test_for_run")
# We launch a workflow
with self.dataset_populator.test_history() as history_id_one, self.dataset_populator.test_history() as history_id_two:
workflow_request, _ = self._setup_workflow_run(workflow, history_id=history_id_one)
run_workflow_response = self._post("workflows", data=workflow_request).json()
# We copy the workflow inputs to a new history
new_workflow_request = workflow_request.copy()
new_ds_map = json.loads(new_workflow_request['ds_map'])
for key, input_values in run_workflow_response['inputs'].items():
copy_payload = {"content": input_values['id'], "source": "hda", "type": "dataset"}
copy_response = self._post(f"histories/{history_id_two}/contents", data=copy_payload).json()
new_ds_map[key]['id'] = copy_response['id']
new_workflow_request['ds_map'] = json.dumps(new_ds_map, sort_keys=True)
new_workflow_request['history'] = f"hist_id={history_id_two}"
new_workflow_request['use_cached_job'] = True
# We run the workflow again, it should not produce any new outputs
new_workflow_response = self._post("workflows", data=new_workflow_request).json()
first_wf_output = self._get(f"datasets/{run_workflow_response['outputs'][0]}").json()
second_wf_output = self._get(f"datasets/{new_workflow_response['outputs'][0]}").json()
assert first_wf_output['file_name'] == second_wf_output['file_name'], \
f"first output:\n{first_wf_output}\nsecond output:\n{second_wf_output}"
[docs] @skip_without_tool('cat1')
def test_nested_workflow_rerun_with_use_cached_job(self):
with self.dataset_populator.test_history() as history_id_one, self.dataset_populator.test_history() as history_id_two:
test_data = """
outer_input:
value: 1.bed
type: File
"""
run_jobs_summary = self._run_jobs(WORKFLOW_NESTED_SIMPLE, test_data=test_data, history_id=history_id_one)
workflow_request = run_jobs_summary.workflow_request
# We copy the inputs to a new history and re-run the workflow
inputs = json.loads(workflow_request['inputs'])
dataset_type = inputs['outer_input']['src']
dataset_id = inputs['outer_input']['id']
copy_payload = {"content": dataset_id, "source": dataset_type, "type": "dataset"}
copy_response = self._post(f"histories/{history_id_two}/contents", data=copy_payload)
self._assert_status_code_is(copy_response, 200)
new_dataset_id = copy_response.json()['id']
inputs['outer_input']['id'] = new_dataset_id
workflow_request['use_cached_job'] = True
workflow_request['history'] = f"hist_id={history_id_two}"
workflow_request['inputs'] = json.dumps(inputs)
run_workflow_response = self._post("workflows", data=run_jobs_summary.workflow_request).json()
self.workflow_populator.wait_for_workflow(workflow_request['workflow_id'],
run_workflow_response['id'],
history_id_two,
assert_ok=True)
# Now make sure that the HDAs in each history point to the same dataset instances
history_one_contents = self.__history_contents(history_id_one)
history_two_contents = self.__history_contents(history_id_two)
assert len(history_one_contents) == len(history_two_contents)
for i, (item_one, item_two) in enumerate(zip(history_one_contents, history_two_contents)):
assert item_one['dataset_id'] == item_two['dataset_id'], \
'Dataset ids should match, but "%s" and "%s" are not the same for History item %i.' % (item_one['dataset_id'],
item_two['dataset_id'],
i + 1)
[docs] def test_cannot_run_inaccessible_workflow(self):
workflow = self.workflow_populator.load_workflow(name="test_for_run_cannot_access")
workflow_request, history_id = self._setup_workflow_run(workflow)
with self._different_user():
run_workflow_response = self._post("workflows", data=workflow_request)
self._assert_status_code_is(run_workflow_response, 403)
[docs] def test_400_on_invalid_workflow_id(self):
workflow = self.workflow_populator.load_workflow(name="test_for_run_does_not_exist")
workflow_request, history_id = self._setup_workflow_run(workflow)
workflow_request["workflow_id"] = self._random_key()
run_workflow_response = self._post("workflows", data=workflow_request)
self._assert_status_code_is(run_workflow_response, 400)
[docs] def test_cannot_run_against_other_users_history(self):
workflow = self.workflow_populator.load_workflow(name="test_for_run_does_not_exist")
workflow_request, history_id = self._setup_workflow_run(workflow)
with self._different_user():
other_history_id = self.dataset_populator.new_history()
workflow_request["history"] = f"hist_id={other_history_id}"
run_workflow_response = self._post("workflows", data=workflow_request)
self._assert_status_code_is(run_workflow_response, 403)
[docs] def test_cannot_run_bootstrap_admin_workflow(self):
workflow = self.workflow_populator.load_workflow(name="test_bootstrap_admin_cannot_run")
workflow_request, _ = self._setup_workflow_run(workflow)
run_workflow_response = self._post("workflows", data=workflow_request, key=self.master_api_key, json=True)
self._assert_status_code_is(run_workflow_response, 400)
[docs] @skip_without_tool("cat")
@skip_without_tool("cat_list")
def test_workflow_run_with_matching_lists(self):
workflow = self.workflow_populator.load_workflow_from_resource("test_workflow_matching_lists")
workflow_id = self.workflow_populator.create_workflow(workflow)
with self.dataset_populator.test_history() as history_id:
hdca1 = self.dataset_collection_populator.create_list_in_history(history_id, contents=[("sample1-1", "1 2 3"), ("sample2-1", "7 8 9")]).json()
hdca2 = self.dataset_collection_populator.create_list_in_history(history_id, contents=[("sample1-2", "4 5 6"), ("sample2-2", "0 a b")]).json()
self.dataset_populator.wait_for_history(history_id, assert_ok=True)
label_map = {"list1": self._ds_entry(hdca1), "list2": self._ds_entry(hdca2)}
workflow_request = dict(
history=f"hist_id={history_id}",
workflow_id=workflow_id,
ds_map=self._build_ds_map(workflow_id, label_map),
)
run_workflow_response = self._post("workflows", data=workflow_request)
self._assert_status_code_is(run_workflow_response, 200)
self.dataset_populator.wait_for_history(history_id, assert_ok=True)
self.assertEqual("1 2 3\n4 5 6\n7 8 9\n0 a b\n", self.dataset_populator.get_history_dataset_content(history_id))
[docs] def test_workflow_stability(self):
# Run this index stability test with following command:
# ./run_tests.sh test/api/test_workflows.py:WorkflowsApiTestCase.test_workflow_stability
num_tests = 1
for workflow_file in ["test_workflow_topoambigouity", "test_workflow_topoambigouity_auto_laidout"]:
workflow = self.workflow_populator.load_workflow_from_resource(workflow_file)
last_step_map = self._step_map(workflow)
for _ in range(num_tests):
uploaded_workflow_id = self.workflow_populator.create_workflow(workflow)
downloaded_workflow = self._download_workflow(uploaded_workflow_id)
step_map = self._step_map(downloaded_workflow)
assert step_map == last_step_map
last_step_map = step_map
def _step_map(self, workflow):
# Build dict mapping 'tep index to input name.
step_map = {}
for step_index, step in workflow["steps"].items():
if step["type"] == "data_input":
step_map[step_index] = step["inputs"][0]["name"]
return step_map
[docs] def test_empty_create(self):
response = self._post("workflows")
self._assert_status_code_is(response, 400)
self._assert_error_code_is(response, error_codes.USER_REQUEST_MISSING_PARAMETER)
[docs] def test_invalid_create_multiple_types(self):
data = {
'shared_workflow_id': '1234567890abcdef',
'from_history_id': '1234567890abcdef'
}
response = self._post("workflows", data)
self._assert_status_code_is(response, 400)
self._assert_error_code_is(response, error_codes.USER_REQUEST_INVALID_PARAMETER)
[docs] @skip_without_tool("cat1")
def test_run_with_pja(self):
workflow = self.workflow_populator.load_workflow(name="test_for_pja_run", add_pja=True)
workflow_request, history_id = self._setup_workflow_run(workflow, inputs_by='step_index')
workflow_request["replacement_params"] = dumps(dict(replaceme="was replaced"))
run_workflow_response = self._post("workflows", data=workflow_request)
self._assert_status_code_is(run_workflow_response, 200)
content = self.dataset_populator.get_history_dataset_details(history_id, wait=True, assert_ok=True)
assert content["name"] == "foo was replaced"
[docs] @skip_without_tool("output_filter")
def test_optional_workflow_output(self):
with self.dataset_populator.test_history() as history_id:
run_object = self._run_jobs("""
class: GalaxyWorkflow
inputs: []
outputs:
wf_output_1:
outputSource: output_filter/out_1
steps:
output_filter:
tool_id: output_filter
state:
produce_out_1: False
filter_text_1: '1'
produce_collection: False
""", test_data={}, history_id=history_id, wait=False)
self.wait_for_invocation_and_jobs(history_id, run_object.workflow_id, run_object.invocation_id)
contents = self.__history_contents(history_id)
assert len(contents) == 1
okay_dataset = contents[0]
assert okay_dataset["state"] == "ok"
[docs] @skip_without_tool("output_filter_with_input_optional")
def test_workflow_optional_input_filtering(self):
with self.dataset_populator.test_history() as history_id:
test_data = """
input1:
collection_type: list
elements:
- identifier: A
content: A
"""
run_object = self._run_jobs("""
class: GalaxyWorkflow
inputs:
input1:
type: collection
collection_type: list
outputs:
wf_output_1:
outputSource: output_filter/out_1
steps:
output_filter:
tool_id: output_filter_with_input_optional
in:
input_1: input1
""", test_data=test_data, history_id=history_id, wait=False)
self.wait_for_invocation_and_jobs(history_id, run_object.workflow_id, run_object.invocation_id)
contents = self.__history_contents(history_id)
assert len(contents) == 4
for content in contents:
if content["history_content_type"] == "dataset":
assert content["state"] == "ok"
else:
print(content)
assert content["populated_state"] == "ok"
[docs] @skip_without_tool("cat")
def test_run_rename_on_mapped_over_collection(self):
with self.dataset_populator.test_history() as history_id:
self._run_jobs("""
class: GalaxyWorkflow
inputs:
input1:
type: collection
collection_type: list
steps:
first_cat:
tool_id: cat
in:
input1: input1
outputs:
out_file1:
rename: "my new name"
""", test_data="""
input1:
collection_type: list
name: the_dataset_list
elements:
- identifier: el1
value: 1.fastq
type: File
""", history_id=history_id)
content = self.dataset_populator.get_history_dataset_details(history_id, hid=4, wait=True, assert_ok=True)
name = content["name"]
assert name == "my new name", name
assert content["history_content_type"] == "dataset"
content = self.dataset_populator.get_history_collection_details(history_id, hid=3, wait=True, assert_ok=True)
name = content["name"]
assert content["history_content_type"] == "dataset_collection", content
assert name == "my new name", name
[docs] @skip_without_tool("cat")
def test_run_rename_based_on_inputs_on_mapped_over_collection(self):
with self.dataset_populator.test_history() as history_id:
self._run_jobs("""
class: GalaxyWorkflow
inputs:
input1:
type: collection
collection_type: list
steps:
first_cat:
tool_id: cat
in:
input1: input1
outputs:
out_file1:
rename: "#{input1} suffix"
""", test_data="""
input1:
collection_type: list
name: the_dataset_list
elements:
- identifier: el1
value: 1.fastq
type: File
""", history_id=history_id)
content = self.dataset_populator.get_history_collection_details(history_id, hid=3, wait=True, assert_ok=True)
name = content["name"]
assert content["history_content_type"] == "dataset_collection", content
assert name == "the_dataset_list suffix", name
[docs] @skip_without_tool("collection_creates_pair")
def test_run_rename_collection_output(self):
with self.dataset_populator.test_history() as history_id:
self._run_jobs("""
class: GalaxyWorkflow
inputs:
input1: data
steps:
- tool_id: collection_creates_pair
in:
input1: input1
outputs:
paired_output:
rename: "my new name"
""", test_data="""
input1:
value: 1.fasta
type: File
name: fasta1
""", history_id=history_id)
details1 = self.dataset_populator.get_history_collection_details(history_id, hid=4, wait=True, assert_ok=True)
assert details1['elements'][0]['object']['visible'] is False
assert details1["name"] == "my new name", details1
assert details1["history_content_type"] == "dataset_collection"
[docs] @skip_without_tool("__BUILD_LIST__")
def test_run_build_list_hide_collection_output(self):
with self.dataset_populator.test_history() as history_id:
self._run_jobs("""
class: GalaxyWorkflow
inputs:
input1: data
steps:
- tool_id: __BUILD_LIST__
in:
datasets_0|input: input1
state:
datasets:
- id_cond:
id_select: id
outputs:
output:
hide: true
""", test_data="""
input1:
value: 1.fasta
type: File
name: fasta1
""", history_id=history_id)
details1 = self.dataset_populator.get_history_collection_details(history_id, hid=3, wait=True, assert_ok=True)
assert details1['elements'][0]['object']['visible'] is False
assert details1["name"] == "data 1 (as list)", details1
assert details1["visible"] is False
[docs] @skip_without_tool("__BUILD_LIST__")
def test_run_build_list_delete_intermediate_collection_output(self):
with self.dataset_populator.test_history() as history_id:
self._run_jobs("""
class: GalaxyWorkflow
inputs:
input1: data
steps:
- tool_id: __BUILD_LIST__
in:
datasets_0|input: input1
state:
datasets:
- id_cond:
id_select: id
outputs:
output:
delete_intermediate_datasets: true
""", test_data="""
input1:
value: 1.fasta
type: File
name: fasta1
""", history_id=history_id)
details1 = self.dataset_populator.get_history_collection_details(history_id, hid=3, wait=True,
assert_ok=True)
assert details1['elements'][0]['object']['visible'] is False
assert details1["name"] == "data 1 (as list)", details1
# FIXME: this doesn't work because the workflow is still being scheduled
# TODO: Implement a way to run PJAs that couldn't be run during/after the job
# after the workflow has run to completion
assert details1["deleted"] is False
[docs] @skip_without_tool("__BUILD_LIST__")
def test_run_build_list_change_datatype_collection_output(self):
with self.dataset_populator.test_history() as history_id:
self._run_jobs("""
class: GalaxyWorkflow
inputs:
input1: data
steps:
- tool_id: __BUILD_LIST__
in:
datasets_0|input: input1
state:
datasets:
- id_cond:
id_select: idx
outputs:
output:
change_datatype: txt
- tool_id: __BUILD_LIST__
in:
datasets_0|input: input1
state:
datasets:
- id_cond:
id_select: idx
""", test_data="""
input1:
value: 1.fasta
type: File
file_type: fasta
name: fasta1
""", history_id=history_id)
details1 = self.dataset_populator.get_history_collection_details(history_id, hid=3, wait=True,
assert_ok=True)
assert details1["name"] == "data 1 (as list)", details1
assert details1['elements'][0]['object']['visible'] is False
assert details1['elements'][0]['object']['file_ext'] == 'txt'
details2 = self.dataset_populator.get_history_collection_details(history_id, hid=5, wait=True,
assert_ok=True)
# Also check that we don't overwrite the original HDA's datatype
assert details2['elements'][0]['object']['file_ext'] == 'fasta'
[docs] @skip_without_tool("__BUILD_LIST__")
def test_run_build_list_rename_collection_output(self):
with self.dataset_populator.test_history() as history_id:
self._run_jobs("""
class: GalaxyWorkflow
inputs:
input1: data
steps:
- tool_id: __BUILD_LIST__
in:
datasets_0|input: input1
state:
datasets:
- id_cond:
id_select: idx
outputs:
output:
rename: "my new name"
""", test_data="""
input1:
value: 1.fasta
type: File
name: fasta1
""", history_id=history_id)
details1 = self.dataset_populator.get_history_collection_details(history_id, hid=3, wait=True,
assert_ok=True)
assert details1['elements'][0]['object']['visible'] is False
assert details1["name"] == "my new name", details1
assert details1["history_content_type"] == "dataset_collection"
[docs] @skip_without_tool("create_2")
def test_run_rename_multiple_outputs(self):
with self.dataset_populator.test_history() as history_id:
self._run_jobs("""
class: GalaxyWorkflow
inputs: []
steps:
create_2:
tool_id: create_2
state:
sleep_time: 0
outputs:
out_file1:
rename: "my new name"
out_file2:
rename: "my other new name"
""", test_data={}, history_id=history_id)
details1 = self.dataset_populator.get_history_dataset_details(history_id, hid=1, wait=True, assert_ok=True)
details2 = self.dataset_populator.get_history_dataset_details(history_id, hid=2)
assert details1["name"] == "my new name"
assert details2["name"] == "my other new name"
[docs] @skip_without_tool("cat")
def test_run_rename_based_on_input(self):
with self.dataset_populator.test_history() as history_id:
self._run_jobs(WORKFLOW_RENAME_ON_INPUT, history_id=history_id)
content = self.dataset_populator.get_history_dataset_details(history_id, wait=True, assert_ok=True)
name = content["name"]
assert name == "fasta1 suffix", name
[docs] @skip_without_tool("fail_identifier")
@skip_without_tool("cat")
def test_run_rename_when_resuming_jobs(self):
with self.dataset_populator.test_history() as history_id:
self._run_jobs("""
class: GalaxyWorkflow
inputs:
input1: data
steps:
first_fail:
tool_id: fail_identifier
state:
failbool: true
input1:
$link: input1
outputs:
out_file1:
rename: "cat1 out"
cat:
tool_id: cat
in:
input1: first_fail/out_file1
outputs:
out_file1:
rename: "#{input1} suffix"
""", test_data="""
input1:
value: 1.fasta
type: File
name: fail
""", history_id=history_id, wait=True, assert_ok=False)
content = self.dataset_populator.get_history_dataset_details(history_id, hid=2, wait=True, assert_ok=False)
name = content["name"]
assert content['state'] == 'error', content
input1 = self.dataset_populator.get_history_dataset_details(history_id, hid=1, wait=True, assert_ok=False)
job_id = content['creating_job']
inputs = {"input1": {'values': [{'src': 'hda',
'id': input1['id']}]
},
"failbool": "false",
"rerun_remap_job_id": job_id}
self.dataset_populator.run_tool(tool_id='fail_identifier',
inputs=inputs,
history_id=history_id,
assert_ok=True)
unpaused_dataset = self.dataset_populator.get_history_dataset_details(history_id, wait=True, assert_ok=False)
assert unpaused_dataset['state'] == 'ok'
assert unpaused_dataset['name'] == f"{name} suffix"
[docs] @skip_without_tool("cat")
def test_run_rename_based_on_input_recursive(self):
with self.dataset_populator.test_history() as history_id:
self._run_jobs("""
class: GalaxyWorkflow
inputs:
input1: data
steps:
first_cat:
tool_id: cat
in:
input1: input1
outputs:
out_file1:
rename: "#{input1} #{input1 | upper} suffix"
""", test_data="""
input1:
value: 1.fasta
type: File
name: '#{input1}'
""", history_id=history_id)
content = self.dataset_populator.get_history_dataset_details(history_id, wait=True, assert_ok=True)
name = content["name"]
assert name == "#{input1} #{INPUT1} suffix", name
[docs] @skip_without_tool("cat")
def test_run_rename_based_on_input_repeat(self):
with self.dataset_populator.test_history() as history_id:
self._run_jobs("""
class: GalaxyWorkflow
inputs:
input1: data
input2: data
steps:
first_cat:
tool_id: cat
state:
input1:
$link: input1
queries:
- input2:
$link: input2
outputs:
out_file1:
rename: "#{queries_0.input2| basename} suffix"
""", test_data="""
input1:
value: 1.fasta
type: File
name: fasta1
input2:
value: 1.fasta
type: File
name: fasta2
""", history_id=history_id)
content = self.dataset_populator.get_history_dataset_details(history_id, wait=True, assert_ok=True)
name = content["name"]
assert name == "fasta2 suffix", name
[docs] @skip_without_tool("mapper2")
def test_run_rename_based_on_input_conditional(self):
with self.dataset_populator.test_history() as history_id:
self._run_jobs("""
class: GalaxyWorkflow
inputs:
fasta_input: data
fastq_input: data
steps:
mapping:
tool_id: mapper2
state:
fastq_input:
fastq_input_selector: single
fastq_input1:
$link: fastq_input
reference:
$link: fasta_input
outputs:
out_file1:
# Wish it was qualified for conditionals but it doesn't seem to be. -John
# rename: "#{fastq_input.fastq_input1 | basename} suffix"
rename: "#{fastq_input1 | basename} suffix"
""", test_data="""
fasta_input:
value: 1.fasta
type: File
name: fasta1
file_type: fasta
fastq_input:
value: 1.fastqsanger
type: File
name: fastq1
file_type: fastqsanger
""", history_id=history_id)
content = self.dataset_populator.get_history_dataset_details(history_id, wait=True, assert_ok=True)
name = content["name"]
assert name == "fastq1 suffix", name
[docs] @skip_without_tool("mapper2")
def test_run_rename_based_on_input_collection(self):
with self.dataset_populator.test_history() as history_id:
self._run_jobs("""
class: GalaxyWorkflow
inputs:
fasta_input: data
fastq_inputs: data
steps:
mapping:
tool_id: mapper2
state:
fastq_input:
fastq_input_selector: paired_collection
fastq_input1:
$link: fastq_inputs
reference:
$link: fasta_input
outputs:
out_file1:
# Wish it was qualified for conditionals but it doesn't seem to be. -John
# rename: "#{fastq_input.fastq_input1 | basename} suffix"
rename: "#{fastq_input1} suffix"
""", test_data="""
fasta_input:
value: 1.fasta
type: File
name: fasta1
file_type: fasta
fastq_inputs:
collection_type: list
name: the_dataset_pair
elements:
- identifier: forward
value: 1.fastq
type: File
- identifier: reverse
value: 1.fastq
type: File
""", history_id=history_id)
content = self.dataset_populator.get_history_dataset_details(history_id, wait=True, assert_ok=True)
name = content["name"]
assert name == "the_dataset_pair suffix", name
[docs] @skip_without_tool("collection_creates_pair")
def test_run_hide_on_collection_output(self):
with self.dataset_populator.test_history() as history_id:
self._run_jobs("""
class: GalaxyWorkflow
inputs:
input1: data
steps:
create_pair:
tool_id: collection_creates_pair
state:
input1:
$link: input1
outputs:
paired_output:
hide: true
""", test_data="""
input1:
value: 1.fasta
type: File
name: fasta1
""", history_id=history_id)
details1 = self.dataset_populator.get_history_collection_details(history_id, hid=4, wait=True, assert_ok=True)
assert details1["history_content_type"] == "dataset_collection"
assert not details1["visible"], details1
[docs] @skip_without_tool("cat")
def test_run_hide_on_mapped_over_collection(self):
with self.dataset_populator.test_history() as history_id:
self._run_jobs("""
class: GalaxyWorkflow
inputs:
- id: input1
type: data_collection_input
collection_type: list
steps:
first_cat:
tool_id: cat
in:
input1: input1
outputs:
out_file1:
hide: true
""", test_data="""
input1:
collection_type: list
name: the_dataset_list
elements:
- identifier: el1
value: 1.fastq
type: File
""", history_id=history_id)
content = self.dataset_populator.get_history_dataset_details(history_id, hid=4, wait=True, assert_ok=True)
assert content["history_content_type"] == "dataset"
assert not content["visible"]
content = self.dataset_populator.get_history_collection_details(history_id, hid=3, wait=True, assert_ok=True)
assert content["history_content_type"] == "dataset_collection", content
assert not content["visible"]
[docs] @skip_without_tool("cat")
def test_tag_auto_propagation(self):
with self.dataset_populator.test_history() as history_id:
self._run_jobs("""
class: GalaxyWorkflow
inputs:
input1: data
steps:
first_cat:
tool_id: cat
in:
input1: input1
outputs:
out_file1:
add_tags:
- "name:treated1fb"
- "group:condition:treated"
- "group:type:single-read"
- "machine:illumina"
second_cat:
tool_id: cat
in:
input1: first_cat/out_file1
""", test_data="""
input1:
value: 1.fasta
type: File
name: fasta1
""", history_id=history_id, round_trip_format_conversion=True)
details0 = self.dataset_populator.get_history_dataset_details(history_id, hid=2, wait=True, assert_ok=True)
tags = details0["tags"]
assert len(tags) == 4, details0
assert "name:treated1fb" in tags, tags
assert "group:condition:treated" in tags, tags
assert "group:type:single-read" in tags, tags
assert "machine:illumina" in tags, tags
details1 = self.dataset_populator.get_history_dataset_details(history_id, hid=3, wait=True, assert_ok=True)
tags = details1["tags"]
assert len(tags) == 1, details1
assert "name:treated1fb" in tags, tags
[docs] @skip_without_tool("collection_creates_pair")
def test_run_add_tag_on_collection_output(self):
with self.dataset_populator.test_history() as history_id:
self._run_jobs("""
class: GalaxyWorkflow
inputs:
input1: data
steps:
create_pair:
tool_id: collection_creates_pair
in:
input1: input1
outputs:
paired_output:
add_tags:
- "name:foo"
""", test_data="""
input1:
value: 1.fasta
type: File
name: fasta1
""", history_id=history_id, round_trip_format_conversion=True)
details1 = self.dataset_populator.get_history_collection_details(history_id, hid=4, wait=True, assert_ok=True)
assert details1["history_content_type"] == "dataset_collection"
assert details1["tags"][0] == "name:foo", details1
[docs] @skip_without_tool("cat")
def test_run_add_tag_on_mapped_over_collection(self):
with self.dataset_populator.test_history() as history_id:
self._run_jobs("""
class: GalaxyWorkflow
inputs:
input1:
type: collection
collection_type: list
steps:
first_cat:
tool_id: cat
in:
input1: input1
outputs:
out_file1:
add_tags:
- "name:foo"
""", test_data="""
input1:
collection_type: list
name: the_dataset_list
elements:
- identifier: el1
value: 1.fastq
type: File
""", history_id=history_id, round_trip_format_conversion=True)
details1 = self.dataset_populator.get_history_collection_details(history_id, hid=3, wait=True, assert_ok=True)
assert details1["history_content_type"] == "dataset_collection"
assert details1["tags"][0] == "name:foo", details1
[docs] @skip_without_tool("collection_creates_pair")
@skip_without_tool("cat")
def test_run_remove_tag_on_collection_output(self):
with self.dataset_populator.test_history() as history_id:
self._run_jobs("""
class: GalaxyWorkflow
inputs:
input1: data
steps:
first_cat:
tool_id: cat
in:
input1: input1
outputs:
out_file1:
add_tags:
- "name:foo"
create_pair:
tool_id: collection_creates_pair
in:
input1: first_cat/out_file1
outputs:
paired_output:
remove_tags:
- "name:foo"
""", test_data="""
input1:
value: 1.fasta
type: File
name: fasta1
""", history_id=history_id, round_trip_format_conversion=True)
details_dataset_with_tag = self.dataset_populator.get_history_dataset_details(history_id, hid=2, wait=True, assert_ok=True)
assert details_dataset_with_tag["history_content_type"] == "dataset", details_dataset_with_tag
assert details_dataset_with_tag["tags"][0] == "name:foo", details_dataset_with_tag
details_collection_without_tag = self.dataset_populator.get_history_collection_details(history_id, hid=5, wait=True, assert_ok=True)
assert details_collection_without_tag["history_content_type"] == "dataset_collection", details_collection_without_tag
assert len(details_collection_without_tag["tags"]) == 0, details_collection_without_tag
[docs] @skip_without_tool("cat1")
def test_run_with_runtime_pja(self):
workflow = self.workflow_populator.load_workflow(name="test_for_pja_runtime")
uuid0, uuid1, uuid2 = str(uuid4()), str(uuid4()), str(uuid4())
workflow["steps"]["0"]["uuid"] = uuid0
workflow["steps"]["1"]["uuid"] = uuid1
workflow["steps"]["2"]["uuid"] = uuid2
workflow_request, history_id = self._setup_workflow_run(workflow, inputs_by='step_index')
workflow_request["replacement_params"] = dumps(dict(replaceme="was replaced"))
pja_map = {
"RenameDatasetActionout_file1": dict(
action_type="RenameDatasetAction",
output_name="out_file1",
action_arguments=dict(newname="foo ${replaceme}"),
)
}
workflow_request["parameters"] = dumps({
uuid2: {"__POST_JOB_ACTIONS__": pja_map}
})
run_workflow_response = self._post("workflows", data=workflow_request)
self._assert_status_code_is(run_workflow_response, 200)
content = self.dataset_populator.get_history_dataset_details(history_id, wait=True, assert_ok=True)
assert content["name"] == "foo was replaced", content["name"]
# Test for regression of previous behavior where runtime post job actions
# would be added to the original workflow post job actions.
workflow_id = workflow_request["workflow_id"]
downloaded_workflow = self._download_workflow(workflow_id)
pjas = list(downloaded_workflow["steps"]["2"]["post_job_actions"].values())
assert len(pjas) == 0, len(pjas)
[docs] @skip_without_tool("cat1")
def test_run_with_delayed_runtime_pja(self):
workflow_id = self._upload_yaml_workflow("""
class: GalaxyWorkflow
inputs:
test_input: data
steps:
first_cat:
tool_id: cat1
in:
input1: test_input
the_pause:
type: pause
in:
input: first_cat/out_file1
second_cat:
tool_id: cat1
in:
input1: the_pause
""", round_trip_format_conversion=True)
downloaded_workflow = self._download_workflow(workflow_id)
uuid_dict = {int(index): step["uuid"] for index, step in downloaded_workflow["steps"].items()}
with self.dataset_populator.test_history() as history_id:
hda = self.dataset_populator.new_dataset(history_id, content="1 2 3")
self.dataset_populator.wait_for_history(history_id)
inputs = {
'0': self._ds_entry(hda),
}
uuid2 = uuid_dict[3]
workflow_request = {}
workflow_request["replacement_params"] = dumps(dict(replaceme="was replaced"))
pja_map = {
"RenameDatasetActionout_file1": dict(
action_type="RenameDatasetAction",
output_name="out_file1",
action_arguments=dict(newname="foo ${replaceme}"),
)
}
workflow_request["parameters"] = dumps({
uuid2: {"__POST_JOB_ACTIONS__": pja_map}
})
invocation_id = self.__invoke_workflow(history_id, workflow_id, inputs=inputs, request=workflow_request)
time.sleep(2)
self.dataset_populator.wait_for_history(history_id)
self.__review_paused_steps(workflow_id, invocation_id, order_index=2, action=True)
self.workflow_populator.wait_for_workflow(workflow_id, invocation_id, history_id)
time.sleep(1)
content = self.dataset_populator.get_history_dataset_details(history_id)
assert content["name"] == "foo was replaced", content["name"]
[docs] @skip_without_tool("cat1")
def test_delete_intermediate_datasets_pja_1(self):
with self.dataset_populator.test_history() as history_id:
self._run_jobs("""
class: GalaxyWorkflow
inputs:
input1: data
outputs:
wf_output_1:
outputSource: third_cat/out_file1
steps:
first_cat:
tool_id: cat1
in:
input1: input1
second_cat:
tool_id: cat1
in:
input1: first_cat/out_file1
third_cat:
tool_id: cat1
in:
input1: second_cat/out_file1
outputs:
out_file1:
delete_intermediate_datasets: true
""", test_data={"input1": "hello world"}, history_id=history_id)
hda1 = self.dataset_populator.get_history_dataset_details(history_id, hid=1)
hda2 = self.dataset_populator.get_history_dataset_details(history_id, hid=2)
hda3 = self.dataset_populator.get_history_dataset_details(history_id, hid=3)
hda4 = self.dataset_populator.get_history_dataset_details(history_id, hid=4)
assert not hda1["deleted"]
assert hda2["deleted"]
# I think hda3 should be deleted, but the inputs to
# steps with workflow outputs are not deleted.
# assert hda3["deleted"]
print(hda3["deleted"])
assert not hda4["deleted"]
[docs] @skip_without_tool("cat1")
def test_validated_post_job_action_validated(self):
with self.dataset_populator.test_history() as history_id:
self._run_jobs("""
class: GalaxyWorkflow
inputs:
input1: data
outputs:
wf_output_1:
outputSource: first_cat/out_file1
steps:
first_cat:
tool_id: cat1
in:
input1: input1
post_job_actions:
ValidateOutputsAction:
action_type: ValidateOutputsAction
""", test_data={"input1": {"type": "File", "file_type": "fastqsanger", "value": "1.fastqsanger"}}, history_id=history_id)
hda2 = self.dataset_populator.get_history_dataset_details(history_id, hid=2)
assert hda2["validated_state"] == "ok"
[docs] @skip_without_tool("cat1")
def test_validated_post_job_action_unvalidated_default(self):
with self.dataset_populator.test_history() as history_id:
self._run_jobs(WORKFLOW_SIMPLE, test_data={"input1": {"type": "File", "file_type": "fastqsanger", "value": "1.fastqsanger"}}, history_id=history_id)
hda2 = self.dataset_populator.get_history_dataset_details(history_id, hid=2)
assert hda2["validated_state"] == "unknown"
[docs] @skip_without_tool("cat1")
def test_validated_post_job_action_invalid(self):
with self.dataset_populator.test_history() as history_id:
self._run_jobs("""
class: GalaxyWorkflow
inputs:
input1: data
outputs:
wf_output_1:
outputSource: first_cat/out_file1
steps:
first_cat:
tool_id: cat1
in:
input1: input1
post_job_actions:
ValidateOutputsAction:
action_type: ValidateOutputsAction
""", test_data={"input1": {"type": "File", "file_type": "fastqcssanger", "value": "1.fastqsanger"}}, history_id=history_id)
hda2 = self.dataset_populator.get_history_dataset_details(history_id, hid=2)
assert hda2["validated_state"] == "invalid"
[docs] def test_value_restriction_with_select_and_text_param(self):
workflow_id = self.workflow_populator.upload_yaml_workflow("""
class: GalaxyWorkflow
inputs:
select_text:
type: text
restrictOnConnections: true
steps:
select:
tool_id: multi_select
in:
select_ex: select_text
tool_with_text_input:
tool_id: param_text_option
in:
text_param: select_text
""")
with self.dataset_populator.test_history() as history_id:
run_workflow = self._download_workflow(workflow_id, style='run', history_id=history_id)
options = run_workflow['steps'][0]['inputs'][0]['options']
assert len(options) == 5
assert options[0] == ['Ex1', '--ex1', False]
[docs] @skip_without_tool("random_lines1")
def test_run_replace_params_by_tool(self):
workflow_request, history_id = self._setup_random_x2_workflow("test_for_replace_tool_params")
workflow_request["parameters"] = dumps(dict(random_lines1=dict(num_lines=5)))
run_workflow_response = self._post("workflows", data=workflow_request)
self._assert_status_code_is(run_workflow_response, 200)
self.dataset_populator.wait_for_history(history_id, assert_ok=True)
# Would be 8 and 6 without modification
self.__assert_lines_hid_line_count_is(history_id, 2, 5)
self.__assert_lines_hid_line_count_is(history_id, 3, 5)
[docs] @skip_without_tool("random_lines1")
def test_run_replace_params_by_uuid(self):
workflow_request, history_id = self._setup_random_x2_workflow("test_for_replace_tool_params")
workflow_request["parameters"] = dumps({
"58dffcc9-bcb7-4117-a0e1-61513524b3b1": dict(num_lines=4),
"58dffcc9-bcb7-4117-a0e1-61513524b3b2": dict(num_lines=3),
})
run_workflow_response = self._post("workflows", data=workflow_request)
self._assert_status_code_is(run_workflow_response, 200)
self.dataset_populator.wait_for_history(history_id, assert_ok=True)
# Would be 8 and 6 without modification
self.__assert_lines_hid_line_count_is(history_id, 2, 4)
self.__assert_lines_hid_line_count_is(history_id, 3, 3)
[docs] @skip_without_tool("cat1")
@skip_without_tool("addValue")
def test_run_batch(self):
workflow = self.workflow_populator.load_workflow_from_resource("test_workflow_batch")
workflow_id = self.workflow_populator.create_workflow(workflow)
with self.dataset_populator.test_history() as history_id:
hda1 = self.dataset_populator.new_dataset(history_id, content="1 2 3")
hda2 = self.dataset_populator.new_dataset(history_id, content="4 5 6")
hda3 = self.dataset_populator.new_dataset(history_id, content="7 8 9")
hda4 = self.dataset_populator.new_dataset(history_id, content="10 11 12")
parameters = {
"0": {"input": {"batch": True, "values": [{"id": hda1.get("id"), "hid": hda1.get("hid"), "src": "hda"},
{"id": hda2.get("id"), "hid": hda2.get("hid"), "src": "hda"},
{"id": hda3.get("id"), "hid": hda2.get("hid"), "src": "hda"},
{"id": hda4.get("id"), "hid": hda2.get("hid"), "src": "hda"}]}},
"1": {"input": {"batch": False, "values": [{"id": hda1.get("id"), "hid": hda1.get("hid"), "src": "hda"}]}, "exp": "2"}}
workflow_request = {
"history_id": history_id,
"batch": True,
"parameters_normalized": True,
"parameters": dumps(parameters),
}
invocation_response = self._post(f"workflows/{workflow_id}/usage", data=workflow_request)
self._assert_status_code_is(invocation_response, 200)
time.sleep(5)
self.dataset_populator.wait_for_history(history_id, assert_ok=True)
r1 = "1 2 3\t1\n1 2 3\t2\n"
r2 = "4 5 6\t1\n1 2 3\t2\n"
r3 = "7 8 9\t1\n1 2 3\t2\n"
r4 = "10 11 12\t1\n1 2 3\t2\n"
t1 = self.dataset_populator.get_history_dataset_content(history_id, hid=7)
t2 = self.dataset_populator.get_history_dataset_content(history_id, hid=10)
t3 = self.dataset_populator.get_history_dataset_content(history_id, hid=13)
t4 = self.dataset_populator.get_history_dataset_content(history_id, hid=16)
self.assertEqual(r1, t1)
self.assertEqual(r2, t2)
self.assertEqual(r3, t3)
self.assertEqual(r4, t4)
[docs] @skip_without_tool("cat1")
@skip_without_tool("addValue")
def test_run_batch_inputs(self):
workflow = self.workflow_populator.load_workflow_from_resource("test_workflow_batch")
workflow_id = self.workflow_populator.create_workflow(workflow)
with self.dataset_populator.test_history() as history_id:
hda1 = self.dataset_populator.new_dataset(history_id, content="1 2 3")
hda2 = self.dataset_populator.new_dataset(history_id, content="4 5 6")
hda3 = self.dataset_populator.new_dataset(history_id, content="7 8 9")
hda4 = self.dataset_populator.new_dataset(history_id, content="10 11 12")
inputs = {
"coolinput": {"batch": True, "values": [{"id": hda1.get("id"), "hid": hda1.get("hid"), "src": "hda"},
{"id": hda2.get("id"), "hid": hda2.get("hid"), "src": "hda"},
{"id": hda3.get("id"), "hid": hda2.get("hid"), "src": "hda"},
{"id": hda4.get("id"), "hid": hda2.get("hid"), "src": "hda"}]}
}
parameters = {
"1": {"input": {"batch": False, "values": [{"id": hda1.get("id"), "hid": hda1.get("hid"), "src": "hda"}]}, "exp": "2"}
}
workflow_request = {
"history_id": history_id,
"batch": True,
"inputs": dumps(inputs),
"inputs_by": "name",
"parameters_normalized": True,
"parameters": dumps(parameters),
}
invocation_response = self._post(f"workflows/{workflow_id}/usage", data=workflow_request)
self._assert_status_code_is(invocation_response, 200)
time.sleep(5)
self.dataset_populator.wait_for_history(history_id, assert_ok=True)
r1 = "1 2 3\t1\n1 2 3\t2\n"
r2 = "4 5 6\t1\n1 2 3\t2\n"
r3 = "7 8 9\t1\n1 2 3\t2\n"
r4 = "10 11 12\t1\n1 2 3\t2\n"
t1 = self.dataset_populator.get_history_dataset_content(history_id, hid=7)
t2 = self.dataset_populator.get_history_dataset_content(history_id, hid=10)
t3 = self.dataset_populator.get_history_dataset_content(history_id, hid=13)
t4 = self.dataset_populator.get_history_dataset_content(history_id, hid=16)
self.assertEqual(r1, t1)
self.assertEqual(r2, t2)
self.assertEqual(r3, t3)
self.assertEqual(r4, t4)
[docs] @skip_without_tool("validation_default")
def test_parameter_substitution_sanitization(self):
substitions = dict(input1="\" ; echo \"moo")
run_workflow_response, history_id = self._run_validation_workflow_with_substitions(substitions)
self.dataset_populator.wait_for_history(history_id, assert_ok=True)
self.assertEqual("__dq__ X echo __dq__moo\n", self.dataset_populator.get_history_dataset_content(history_id, hid=1))
[docs] @skip_without_tool("validation_repeat")
def test_parameter_substitution_validation_value_errors_0(self):
with self.dataset_populator.test_history() as history_id:
workflow_id = self._upload_yaml_workflow("""
class: GalaxyWorkflow
steps:
validation:
tool_id: validation_repeat
state:
r2:
- text: "abd"
""")
workflow_request = dict(
history=f"hist_id={history_id}",
parameters=dumps(dict(validation_repeat={"r2_0|text": ""}))
)
url = f"workflows/{workflow_id}/invocations"
invocation_response = self._post(url, data=workflow_request)
# Take a valid stat and make it invalid, assert workflow won't run.
self._assert_status_code_is(invocation_response, 400)
[docs] @skip_without_tool("validation_default")
def test_parameter_substitution_validation_value_errors_1(self):
substitions = dict(select_param="\" ; echo \"moo")
run_workflow_response, history_id = self._run_validation_workflow_with_substitions(substitions)
self._assert_status_code_is(run_workflow_response, 400)
[docs] @skip_without_tool("validation_repeat")
def test_workflow_import_state_validation_1(self):
with self.dataset_populator.test_history() as history_id:
self._run_jobs("""
class: GalaxyWorkflow
steps:
validation:
tool_id: validation_repeat
state:
r2:
- text: ""
""", history_id=history_id, wait=False, expected_response=400, assert_ok=False)
def _run_validation_workflow_with_substitions(self, substitions):
workflow = self.workflow_populator.load_workflow_from_resource("test_workflow_validation_1")
uploaded_workflow_id = self.workflow_populator.create_workflow(workflow)
history_id = self.dataset_populator.new_history()
workflow_request = dict(
history=f"hist_id={history_id}",
workflow_id=uploaded_workflow_id,
parameters=dumps(dict(validation_default=substitions))
)
run_workflow_response = self._post("workflows", data=workflow_request)
return run_workflow_response, history_id
[docs] @skip_without_tool("random_lines1")
def test_run_replace_params_by_steps(self):
workflow_request, history_id, steps = self._setup_random_x2_workflow_steps("test_for_replace_step_params")
params = dumps({str(steps[1]["id"]): dict(num_lines=5)})
workflow_request["parameters"] = params
run_workflow_response = self._post("workflows", data=workflow_request)
self._assert_status_code_is(run_workflow_response, 200)
self.dataset_populator.wait_for_history(history_id, assert_ok=True)
# Would be 8 and 6 without modification
self.__assert_lines_hid_line_count_is(history_id, 2, 8)
self.__assert_lines_hid_line_count_is(history_id, 3, 5)
[docs] @skip_without_tool("random_lines1")
def test_run_replace_params_nested(self):
workflow_request, history_id, steps = self._setup_random_x2_workflow_steps("test_for_replace_step_params_nested")
seed_source = dict(
seed_source_selector="set_seed",
seed="moo",
)
params = dumps({str(steps[0]["id"]): dict(num_lines=1, seed_source=seed_source),
str(steps[1]["id"]): dict(num_lines=1, seed_source=seed_source)})
workflow_request["parameters"] = params
run_workflow_response = self._post("workflows", data=workflow_request)
self._assert_status_code_is(run_workflow_response, 200)
self.dataset_populator.wait_for_history(history_id, assert_ok=True)
self.assertEqual("2\n", self.dataset_populator.get_history_dataset_content(history_id))
[docs] @skip_without_tool("random_lines1")
def test_run_replace_params_nested_normalized(self):
workflow_request, history_id, steps = self._setup_random_x2_workflow_steps("test_for_replace_step_normalized_params_nested")
parameters = {
"num_lines": 1,
"seed_source|seed_source_selector": "set_seed",
"seed_source|seed": "moo",
}
params = dumps({str(steps[0]["id"]): parameters,
str(steps[1]["id"]): parameters})
workflow_request["parameters"] = params
workflow_request["parameters_normalized"] = False
run_workflow_response = self._post("workflows", data=workflow_request)
self._assert_status_code_is(run_workflow_response, 200)
self.dataset_populator.wait_for_history(history_id, assert_ok=True)
self.assertEqual("2\n", self.dataset_populator.get_history_dataset_content(history_id))
[docs] @skip_without_tool("random_lines1")
def test_run_replace_params_over_default(self):
with self.dataset_populator.test_history() as history_id:
self._run_jobs(WORKFLOW_ONE_STEP_DEFAULT, test_data="""
step_parameters:
'1':
num_lines: 4
input:
value: 1.bed
type: File
""", history_id=history_id, wait=True, assert_ok=True, round_trip_format_conversion=True)
result = self.dataset_populator.get_history_dataset_content(history_id)
assert result.count("\n") == 4
[docs] @skip_without_tool("random_lines1")
def test_defaults_editor(self):
workflow_id = self._upload_yaml_workflow(WORKFLOW_ONE_STEP_DEFAULT, publish=True)
workflow_object = self._download_workflow(workflow_id, style="editor")
put_response = self._update_workflow(workflow_id, workflow_object)
assert put_response.status_code == 200
[docs] @skip_without_tool("random_lines1")
def test_run_replace_params_over_default_delayed(self):
with self.dataset_populator.test_history() as history_id:
run_summary = self._run_jobs("""
class: GalaxyWorkflow
inputs:
input: data
steps:
first_cat:
tool_id: cat1
in:
input1: input
the_pause:
type: pause
in:
input: first_cat/out_file1
randomlines:
tool_id: random_lines1
in:
input: the_pause
num_lines:
default: 6
""", test_data="""
step_parameters:
'3':
num_lines: 4
input:
value: 1.bed
type: File
""", history_id=history_id, wait=False)
wait_on(lambda: len(self._history_jobs(history_id)) >= 2 or None, "history jobs")
self.dataset_populator.wait_for_history(history_id, assert_ok=True)
workflow_id = run_summary.workflow_id
invocation_id = run_summary.invocation_id
self.__review_paused_steps(workflow_id, invocation_id, order_index=2, action=True)
self.wait_for_invocation_and_jobs(history_id, workflow_id, invocation_id)
result = self.dataset_populator.get_history_dataset_content(history_id)
assert result.count("\n") == 4
[docs] def test_pja_import_export(self):
workflow = self.workflow_populator.load_workflow(name="test_for_pja_import", add_pja=True)
uploaded_workflow_id = self.workflow_populator.create_workflow(workflow)
downloaded_workflow = self._download_workflow(uploaded_workflow_id)
self._assert_has_keys(downloaded_workflow["steps"], "0", "1", "2")
pjas = list(downloaded_workflow["steps"]["2"]["post_job_actions"].values())
assert len(pjas) == 1, len(pjas)
pja = pjas[0]
self._assert_has_keys(pja, "action_type", "output_name", "action_arguments")
[docs] @skip_without_tool("cat1")
def test_only_own_invocations_indexed_and_accessible(self):
workflow_id, usage = self._run_workflow_once_get_invocation("test_usage")
with self._different_user():
usage_details_response = self._get(f"workflows/{workflow_id}/usage/{usage['id']}")
self._assert_status_code_is(usage_details_response, 403)
index_response = self._get(f"workflows/{workflow_id}/invocations")
self._assert_status_code_is(index_response, 200)
assert len(index_response.json()) == 0
invocation_ids = self._all_user_invocation_ids()
assert usage["id"] in invocation_ids
with self._different_user():
invocation_ids = self._all_user_invocation_ids()
assert usage["id"] not in invocation_ids
[docs] @skip_without_tool("cat1")
def test_invocation_usage(self):
workflow_id, usage = self._run_workflow_once_get_invocation("test_usage")
invocation_id = usage["id"]
usage_details = self._invocation_details(workflow_id, invocation_id)
# Assert some high-level things about the structure of data returned.
self._assert_has_keys(usage_details, "inputs", "steps", "workflow_id", "history_id")
# Check invocations for this workflow invocation by history and regardless of history.
history_invocations_response = self._get("invocations", {"history_id": usage_details["history_id"]})
self._assert_status_code_is(history_invocations_response, 200)
assert len(history_invocations_response.json()) == 1
assert history_invocations_response.json()[0]["id"] == invocation_id
# Check history invocations for this workflow invocation.
invocation_ids = self._all_user_invocation_ids()
assert invocation_id in invocation_ids
# Wait for the invocation to be fully scheduled, so we have details on all steps.
self._wait_for_invocation_state(workflow_id, invocation_id, 'scheduled')
usage_details = self._invocation_details(workflow_id, invocation_id)
invocation_steps = usage_details["steps"]
invocation_input_step, invocation_tool_step = None, None
for invocation_step in invocation_steps:
self._assert_has_keys(invocation_step, "workflow_step_id", "order_index", "id")
order_index = invocation_step["order_index"]
assert order_index in [0, 1, 2], order_index
if order_index == 0:
invocation_input_step = invocation_step
elif order_index == 2:
invocation_tool_step = invocation_step
# Tool steps have non-null job_ids (deprecated though they may be)
assert invocation_input_step.get("job_id", None) is None
job_id = invocation_tool_step.get("job_id", None)
assert job_id is not None
invocation_tool_step_id = invocation_tool_step["id"]
invocation_tool_step_response = self._get(f"workflows/{workflow_id}/invocations/{invocation_id}/steps/{invocation_tool_step_id}")
self._assert_status_code_is(invocation_tool_step_response, 200)
self._assert_has_keys(invocation_tool_step_response.json(), "id", "order_index", "job_id")
assert invocation_tool_step_response.json()["job_id"] == job_id
[docs] def test_invocation_with_collection_mapping(self):
workflow_id, invocation_id = self._run_mapping_workflow()
usage_details = self._invocation_details(workflow_id, invocation_id)
# Assert some high-level things about the structure of data returned.
self._assert_has_keys(usage_details, "inputs", "steps", "workflow_id")
invocation_steps = usage_details["steps"]
invocation_input_step, invocation_tool_step = None, None
for invocation_step in invocation_steps:
self._assert_has_keys(invocation_step, "workflow_step_id", "order_index", "id")
order_index = invocation_step["order_index"]
assert order_index in [0, 1]
if invocation_step["order_index"] == 0:
assert invocation_input_step is None
invocation_input_step = invocation_step
else:
assert invocation_tool_step is None
invocation_tool_step = invocation_step
# Tool steps have non-null job_ids (deprecated though they may be)
assert invocation_input_step.get("job_id", None) is None
assert invocation_tool_step.get("job_id", None) is None
assert invocation_tool_step["state"] == "scheduled"
usage_details = self._invocation_details(workflow_id, invocation_id, legacy_job_state="true")
# Assert some high-level things about the structure of data returned.
self._assert_has_keys(usage_details, "inputs", "steps", "workflow_id")
invocation_steps = usage_details["steps"]
invocation_input_step = None
invocation_tool_steps = []
for invocation_step in invocation_steps:
self._assert_has_keys(invocation_step, "workflow_step_id", "order_index", "id")
order_index = invocation_step["order_index"]
assert order_index in [0, 1]
if invocation_step["order_index"] == 0:
assert invocation_input_step is None
invocation_input_step = invocation_step
else:
invocation_tool_steps.append(invocation_step)
assert len(invocation_tool_steps) == 2
assert invocation_tool_steps[0]["state"] == "ok"
def _run_mapping_workflow(self):
history_id = self.dataset_populator.new_history()
summary = self._run_jobs("""
class: GalaxyWorkflow
inputs:
input_c: collection
steps:
cat1:
tool_id: cat1
in:
input1: input_c
""", test_data="""
input_c:
collection_type: list
elements:
- identifier: i1
content: "0"
- identifier: i2
content: "1"
""", history_id=history_id, wait=True, assert_ok=True)
workflow_id = summary.workflow_id
invocation_id = summary.invocation_id
return workflow_id, invocation_id
[docs] @skip_without_tool("cat1")
def test_invocations_accessible_imported_workflow(self):
workflow_id = self.workflow_populator.simple_workflow("test_usage", publish=True)
with self._different_user():
other_import_response = self.__import_workflow(workflow_id)
self._assert_status_code_is(other_import_response, 200)
other_id = other_import_response.json()["id"]
workflow_request, history_id = self._setup_workflow_run(workflow_id=other_id)
response = self._get(f"workflows/{other_id}/usage")
self._assert_status_code_is(response, 200)
assert len(response.json()) == 0
run_workflow_response = self._post("workflows", data=workflow_request)
self._assert_status_code_is(run_workflow_response, 200)
run_workflow_response = run_workflow_response.json()
invocation_id = run_workflow_response['id']
usage_details_response = self._get(f"workflows/{other_id}/usage/{invocation_id}")
self._assert_status_code_is(usage_details_response, 200)
[docs] @skip_without_tool("cat1")
def test_invocations_accessible_published_workflow(self):
workflow_id = self.workflow_populator.simple_workflow("test_usage", publish=True)
with self._different_user():
workflow_request, history_id = self._setup_workflow_run(workflow_id=workflow_id)
workflow_request['workflow_id'] = workflow_request.pop('workflow_id')
response = self._get(f"workflows/{workflow_id}/usage")
self._assert_status_code_is(response, 200)
assert len(response.json()) == 0
run_workflow_response = self._post("workflows", data=workflow_request)
self._assert_status_code_is(run_workflow_response, 200)
run_workflow_response = run_workflow_response.json()
invocation_id = run_workflow_response['id']
usage_details_response = self._get(f"workflows/{workflow_id}/usage/{invocation_id}")
self._assert_status_code_is(usage_details_response, 200)
[docs] @skip_without_tool("cat1")
def test_invocations_not_accessible_by_different_user_for_published_workflow(self):
workflow_id = self.workflow_populator.simple_workflow("test_usage", publish=True)
workflow_request, history_id = self._setup_workflow_run(workflow_id=workflow_id)
workflow_request['workflow_id'] = workflow_request.pop('workflow_id')
response = self._get(f"workflows/{workflow_id}/usage")
self._assert_status_code_is(response, 200)
assert len(response.json()) == 0
run_workflow_response = self._post("workflows", data=workflow_request)
self._assert_status_code_is(run_workflow_response, 200)
run_workflow_response = run_workflow_response.json()
invocation_id = run_workflow_response['id']
with self._different_user():
usage_details_response = self._get(f"workflows/{workflow_id}/usage/{invocation_id}")
self._assert_status_code_is(usage_details_response, 403)
[docs] def test_workflow_publishing(self):
workflow_id = self.workflow_populator.simple_workflow("dummy")
response = self._show_workflow(workflow_id)
assert not response['published']
published_worklow = self._put(f'workflows/{workflow_id}', data={'published': True}, json=True).json()
assert published_worklow['published']
unpublished_worklow = self._put(f'workflows/{workflow_id}', data={'published': False}, json=True).json()
assert not unpublished_worklow['published']
def _invoke_paused_workflow(self, history_id):
workflow = self.workflow_populator.load_workflow_from_resource("test_workflow_pause")
workflow_id = self.workflow_populator.create_workflow(workflow)
hda1 = self.dataset_populator.new_dataset(history_id, content="1 2 3")
index_map = {
'0': self._ds_entry(hda1),
}
invocation_id = self.__invoke_workflow(
history_id,
workflow_id,
index_map,
)
return workflow_id, invocation_id
def _wait_for_invocation_non_new(self, workflow_id, invocation_id):
target_state_reached = False
for _ in range(50):
invocation = self._invocation_details(workflow_id, invocation_id)
if invocation['state'] != 'new':
target_state_reached = True
break
time.sleep(.25)
return target_state_reached
def _assert_invocation_non_terminal(self, workflow_id, invocation_id):
invocation = self._invocation_details(workflow_id, invocation_id)
assert invocation['state'] in ['ready', 'new'], invocation
def _wait_for_invocation_state(self, workflow_id, invocation_id, target_state):
target_state_reached = False
for _ in range(25):
invocation = self._invocation_details(workflow_id, invocation_id)
if invocation['state'] == target_state:
target_state_reached = True
break
time.sleep(.5)
return target_state_reached
def _update_workflow(self, workflow_id, workflow_object):
return self.workflow_populator.update_workflow(workflow_id, workflow_object)
def _invocation_step_details(self, workflow_id, invocation_id, step_id):
invocation_step_response = self._get(f"workflows/{workflow_id}/usage/{invocation_id}/steps/{step_id}")
self._assert_status_code_is(invocation_step_response, 200)
invocation_step_details = invocation_step_response.json()
return invocation_step_details
def _execute_invocation_step_action(self, workflow_id, invocation_id, step_id, action):
raw_url = f"workflows/{workflow_id}/usage/{invocation_id}/steps/{step_id}"
url = self._api_url(raw_url, use_key=True)
payload = dumps(dict(action=action))
action_response = put(url, data=payload)
self._assert_status_code_is(action_response, 200)
invocation_step_details = action_response.json()
return invocation_step_details
def _run_workflow_once_get_invocation(self, name):
workflow = self.workflow_populator.load_workflow(name=name)
workflow_request, history_id = self._setup_workflow_run(workflow)
workflow_id = workflow_request["workflow_id"]
response = self._get(f"workflows/{workflow_id}/usage")
self._assert_status_code_is(response, 200)
assert len(response.json()) == 0
run_workflow_response = self._post("workflows", data=workflow_request)
self._assert_status_code_is(run_workflow_response, 200)
response = self._get(f"workflows/{workflow_id}/usage")
self._assert_status_code_is(response, 200)
usages = response.json()
assert len(usages) == 1
return workflow_id, usages[0]
def _setup_random_x2_workflow_steps(self, name):
workflow_request, history_id = self._setup_random_x2_workflow("test_for_replace_step_params")
random_line_steps = self._random_lines_steps(workflow_request)
return workflow_request, history_id, random_line_steps
def _random_lines_steps(self, workflow_request):
workflow_summary_response = self._get(f"workflows/{workflow_request['workflow_id']}")
self._assert_status_code_is(workflow_summary_response, 200)
steps = workflow_summary_response.json()["steps"]
return sorted((step for step in steps.values() if step["tool_id"] == "random_lines1"), key=lambda step: step["id"])
def _setup_random_x2_workflow(self, name):
workflow = self.workflow_populator.load_random_x2_workflow(name)
uploaded_workflow_id = self.workflow_populator.create_workflow(workflow)
workflow_inputs = self._workflow_inputs(uploaded_workflow_id)
key = next(iter(workflow_inputs.keys()))
history_id = self.dataset_populator.new_history()
ten_lines = "\n".join(str(_) for _ in range(10))
hda1 = self.dataset_populator.new_dataset(history_id, content=ten_lines)
workflow_request = dict(
history=f"hist_id={history_id}",
workflow_id=uploaded_workflow_id,
ds_map=dumps({
key: self._ds_entry(hda1),
}),
)
return workflow_request, history_id
def __review_paused_steps(self, uploaded_workflow_id, invocation_id, order_index, action=True):
invocation = self._invocation_details(uploaded_workflow_id, invocation_id)
invocation_steps = invocation["steps"]
pause_steps = [s for s in invocation_steps if s['order_index'] == order_index]
for pause_step in pause_steps:
pause_step_id = pause_step['id']
self._execute_invocation_step_action(uploaded_workflow_id, invocation_id, pause_step_id, action=action)
def __assert_lines_hid_line_count_is(self, history, hid, lines):
contents_url = f"histories/{history}/contents"
history_contents = self.__history_contents(history)
hda_summary = next(hc for hc in history_contents if hc["hid"] == hid)
hda_info_response = self._get(f"{contents_url}/{hda_summary['id']}")
self._assert_status_code_is(hda_info_response, 200)
self.assertEqual(hda_info_response.json()["metadata_data_lines"], lines)
def __history_contents(self, history_id):
contents_url = f"histories/{history_id}/contents"
history_contents_response = self._get(contents_url)
self._assert_status_code_is(history_contents_response, 200)
return history_contents_response.json()
def __invoke_workflow(self, *args, **kwds):
return self.workflow_populator.invoke_workflow(*args, **kwds)
def __import_workflow(self, workflow_id, deprecated_route=False):
if deprecated_route:
route = "workflows/import"
import_data = dict(
workflow_id=workflow_id,
)
else:
route = "workflows"
import_data = dict(
shared_workflow_id=workflow_id,
)
return self._post(route, import_data)
def _show_workflow(self, workflow_id):
show_response = self._get(f"workflows/{workflow_id}")
self._assert_status_code_is(show_response, 200)
return show_response.json()
def _assert_looks_like_instance_workflow_representation(self, workflow):
self._assert_has_keys(
workflow,
'url',
'owner',
'inputs',
'annotation',
'steps'
)
for step in workflow["steps"].values():
self._assert_has_keys(
step,
'id',
'type',
'tool_id',
'tool_version',
'annotation',
'tool_inputs',
'input_steps',
)
def _all_user_invocation_ids(self):
all_invocations_for_user = self._get("invocations")
self._assert_status_code_is(all_invocations_for_user, 200)
invocation_ids = [i["id"] for i in all_invocations_for_user.json()]
return invocation_ids
[docs]class AdminWorkflowsApiTestCase(BaseWorkflowsApiTestCase):
require_admin_user = True
[docs] def test_import_export_dynamic_tools(self):
workflow_id = self._upload_yaml_workflow("""
class: GalaxyWorkflow
steps:
- type: input
label: input1
- tool_id: cat1
label: first_cat
state:
input1:
$link: 0
- label: embed1
run:
class: GalaxyTool
command: echo 'hello world 2' > $output1
outputs:
output1:
format: txt
- tool_id: cat1
state:
input1:
$link: first_cat/out_file1
queries:
- input2:
$link: embed1/output1
test_data:
input1: "hello world"
""")
downloaded_workflow = self._download_workflow(workflow_id)
response = self.workflow_populator.create_workflow_response(downloaded_workflow)
workflow_id = response.json()["id"]
history_id = self.dataset_populator.new_history()
hda1 = self.dataset_populator.new_dataset(history_id, content="Hello World Second!")
workflow_request = dict(
inputs_by="name",
inputs=json.dumps({'input1': self._ds_entry(hda1)}),
)
invocation_id = self.workflow_populator.invoke_workflow(history_id, workflow_id, request=workflow_request, assert_ok=True)
self.wait_for_invocation_and_jobs(history_id, workflow_id, invocation_id)
self.assertEqual("Hello World Second!\nhello world 2\n", self.dataset_populator.get_history_dataset_content(history_id, hid=4))