Warning

This document is for an old release of Galaxy. You can alternatively view this page in the latest release if it exists or view the top of the latest release's documentation.

Source code for galaxy.tools.parameters.meta

import copy
import itertools
import logging
from collections import namedtuple

from galaxy import (
    exceptions,
    model,
    util
)
from galaxy.model.dataset_collections import matching, subcollections
from galaxy.util import permutations
from . import visit_input_values

log = logging.getLogger(__name__)

WorkflowParameterExpansion = namedtuple('WorkflowParameterExpansion', ['param_combinations', 'param_keys', 'input_combinations'])


[docs]class ParamKey:
[docs] def __init__(self, step_id, key): self.step_id = step_id self.key = key
[docs]class InputKey:
[docs] def __init__(self, input_id): self.input_id = input_id
[docs]def expand_workflow_inputs(param_inputs, inputs=None): """ Expands incoming encoded multiple payloads, into the set of all individual payload combinations >>> expansion = expand_workflow_inputs({'1': {'input': {'batch': True, 'product': True, 'values': [{'hid': '1'}, {'hid': '2'}] }}}) >>> print(["%s" % (p['1']['input']['hid']) for p in expansion.param_combinations]) ['1', '2'] >>> expansion = expand_workflow_inputs({'1': {'input': {'batch': True, 'values': [{'hid': '1'}, {'hid': '2'}] }}}) >>> print(["%s" % (p['1']['input']['hid']) for p in expansion.param_combinations]) ['1', '2'] >>> expansion = expand_workflow_inputs({'1': {'input': {'batch': True, 'values': [{'hid': '1'}, {'hid': '2'}] }}, '2': {'input': {'batch': True, 'values': [{'hid': '3'}, {'hid': '4'}] }}}) >>> print(["%s%s" % (p['1']['input']['hid'], p['2']['input']['hid']) for p in expansion.param_combinations]) ['13', '24'] >>> expansion = expand_workflow_inputs({'1': {'input': {'batch': True, 'product': True, 'values': [{'hid': '1'}, {'hid': '2'}] }}, '2': {'input': {'batch': True, 'values': [{'hid': '3'}, {'hid': '4'}, {'hid': '5'}] }}}) >>> print(["%s%s" % (p['1']['input']['hid'], p['2']['input']['hid']) for p in expansion.param_combinations]) ['13', '23', '14', '24', '15', '25'] >>> expansion = expand_workflow_inputs({'1': {'input': {'batch': True, 'product': True, 'values': [{'hid': '1'}, {'hid': '2'}] }}, '2': {'input': {'batch': True, 'product': True, 'values': [{'hid': '3'}, {'hid': '4'}, {'hid': '5'}] }}, '3': {'input': {'batch': True, 'product': True, 'values': [{'hid': '6'}, {'hid': '7'}, {'hid': '8'}] }}}) >>> print(["%s%s%s" % (p['1']['input']['hid'], p['2']['input']['hid'], p['3']['input']['hid']) for p in expansion.param_combinations]) ['136', '137', '138', '146', '147', '148', '156', '157', '158', '236', '237', '238', '246', '247', '248', '256', '257', '258'] >>> expansion = expand_workflow_inputs(None, inputs={'myinput': {'batch': True, 'product': True, 'values': [{'hid': '1'}, {'hid': '2'}] }}) >>> print(["%s" % (p['myinput']['hid']) for p in expansion.input_combinations]) ['1', '2'] """ param_inputs = param_inputs or {} inputs = inputs or {} linked_n = None linked = [] product = [] linked_keys = [] product_keys = [] def is_batch(value): return isinstance(value, dict) and 'batch' in value and value['batch'] is True and 'values' in value and isinstance(value['values'], list) for step_id, step in sorted(param_inputs.items()): for key, value in sorted(step.items()): if is_batch(value): nval = len(value['values']) if 'product' in value and value['product'] is True: product.append(value['values']) product_keys.append(ParamKey(step_id, key)) else: if linked_n is None: linked_n = nval elif linked_n != nval or nval == 0: raise exceptions.RequestParameterInvalidException('Failed to match linked batch selections. Please select equal number of data files.') linked.append(value['values']) linked_keys.append(ParamKey(step_id, key)) # Force it to a list to allow modification... input_items = list(inputs.items()) for input_id, value in input_items: if is_batch(value): nval = len(value['values']) if 'product' in value and value['product'] is True: product.append(value['values']) product_keys.append(InputKey(input_id)) else: if linked_n is None: linked_n = nval elif linked_n != nval or nval == 0: raise exceptions.RequestParameterInvalidException('Failed to match linked batch selections. Please select equal number of data files.') linked.append(value['values']) linked_keys.append(InputKey(input_id)) elif isinstance(value, dict) and 'batch' in value: # remove batch wrapper and render simplified input form rest of workflow # code expects inputs[input_id] = value['values'][0] param_combinations = [] input_combinations = [] params_keys = [] linked = linked or [[None]] product = product or [[None]] linked_keys = linked_keys or [None] product_keys = product_keys or [None] for linked_values, product_values in itertools.product(zip(*linked), itertools.product(*product)): new_params = copy.deepcopy(param_inputs) new_inputs = copy.deepcopy(inputs) new_keys = [] for input_key, value in list(zip(linked_keys, linked_values)) + list(zip(product_keys, product_values)): if input_key: if isinstance(input_key, ParamKey): step_id = input_key.step_id key = input_key.key assert step_id is not None new_params[step_id][key] = value if 'hid' in value: new_keys.append(str(value['hid'])) else: input_id = input_key.input_id assert input_id is not None new_inputs[input_id] = value if 'hid' in value: new_keys.append(str(value['hid'])) params_keys.append(new_keys) param_combinations.append(new_params) input_combinations.append(new_inputs) return WorkflowParameterExpansion(param_combinations, params_keys, input_combinations)
[docs]def process_key(incoming_key, incoming_value, d): key_parts = incoming_key.split('|') if len(key_parts) == 1: # Regular parameter if incoming_key in d and not incoming_value: # In case we get an empty repeat after we already filled in a repeat element return d[incoming_key] = incoming_value elif key_parts[0].rsplit('_', 1)[-1].isdigit(): # Repeat input_name, index = key_parts[0].rsplit('_', 1) index = int(index) d.setdefault(input_name, []) newlist = [{} for _ in range(index + 1)] d[input_name].extend(newlist[len(d[input_name]):]) subdict = d[input_name][index] process_key("|".join(key_parts[1:]), incoming_value=incoming_value, d=subdict) else: # Section / Conditional input_name = key_parts[0] subdict = {} d[input_name] = subdict process_key("|".join(key_parts[1:]), incoming_value=incoming_value, d=subdict)
[docs]def expand_meta_parameters(trans, tool, incoming): """ Take in a dictionary of raw incoming parameters and expand to a list of expanded incoming parameters (one set of parameters per tool execution). """ for key in list(incoming.keys()): if key.endswith("|__identifier__"): incoming.pop(key) # If we're going to multiply input dataset combinations # order matters, so the following reorders incoming # according to tool.inputs (which is ordered). incoming_copy = incoming.copy() nested_dict = {} for incoming_key, incoming_value in incoming_copy.items(): if not incoming_key.startswith('__'): process_key(incoming_key, incoming_value=incoming_value, d=nested_dict) reordered_incoming = {} def visitor(input, value, prefix, prefixed_name, prefixed_label, error, **kwargs): if prefixed_name in incoming_copy: reordered_incoming[prefixed_name] = incoming_copy[prefixed_name] del incoming_copy[prefixed_name] visit_input_values(inputs=tool.inputs, input_values=nested_dict, callback=visitor) reordered_incoming.update(incoming_copy) def classifier(input_key): value = incoming[input_key] if isinstance(value, dict) and 'values' in value: # Explicit meta wrapper for inputs... is_batch = value.get('batch', False) is_linked = value.get('linked', True) if is_batch and is_linked: classification = permutations.input_classification.MATCHED elif is_batch: classification = permutations.input_classification.MULTIPLIED else: classification = permutations.input_classification.SINGLE if __collection_multirun_parameter(value): collection_value = value['values'][0] values = __expand_collection_parameter(trans, input_key, collection_value, collections_to_match, linked=is_linked) else: values = value['values'] else: classification = permutations.input_classification.SINGLE values = value return classification, values collections_to_match = matching.CollectionsToMatch() # Stick an unexpanded version of multirun keys so they can be replaced, # by expand_mult_inputs. incoming_template = reordered_incoming expanded_incomings = permutations.expand_multi_inputs(incoming_template, classifier) if collections_to_match.has_collections(): collection_info = trans.app.dataset_collection_manager.match_collections(collections_to_match) else: collection_info = None return expanded_incomings, collection_info
def __expand_collection_parameter(trans, input_key, incoming_val, collections_to_match, linked=False): # If subcollectin multirun of data_collection param - value will # be "hdca_id|subcollection_type" else it will just be hdca_id if "|" in incoming_val: encoded_hdc_id, subcollection_type = incoming_val.split("|", 1) else: try: src = incoming_val["src"] if src != "hdca": raise exceptions.ToolMetaParameterException(f"Invalid dataset collection source type {src}") encoded_hdc_id = incoming_val["id"] subcollection_type = incoming_val.get('map_over_type', None) except TypeError: encoded_hdc_id = incoming_val subcollection_type = None hdc_id = trans.app.security.decode_id(encoded_hdc_id) hdc = trans.sa_session.query(model.HistoryDatasetCollectionAssociation).get(hdc_id) collections_to_match.add(input_key, hdc, subcollection_type=subcollection_type, linked=linked) if subcollection_type is not None: subcollection_elements = subcollections.split_dataset_collection_instance(hdc, subcollection_type) return subcollection_elements else: hdas = [] for element in hdc.collection.dataset_elements: hda = element.dataset_instance hda.element_identifier = element.element_identifier hdas.append(hda) return hdas def __collection_multirun_parameter(value): is_batch = value.get('batch', False) if not is_batch: return False batch_values = util.listify(value['values']) if len(batch_values) == 1: batch_over = batch_values[0] if isinstance(batch_over, dict) and ('src' in batch_over) and (batch_over['src'] in {'hdca', 'dce'}): return True return False