Warning
This document is for an old release of Galaxy. You can alternatively view this page in the latest release if it exists or view the top of the latest release's documentation.
Source code for galaxy.managers.datasets
"""
Manager and Serializer for Datasets.
"""
import glob
import logging
import os
from typing import Type
from galaxy import (
exceptions,
model
)
from galaxy.datatypes import sniff
from galaxy.managers import (
base,
deletable,
rbac_secured,
secured,
users
)
from galaxy.structured_app import MinimalManagerApp
from galaxy.util.checkers import check_binary
log = logging.getLogger(__name__)
[docs]class DatasetManager(base.ModelManager, secured.AccessibleManagerMixin, deletable.PurgableManagerMixin):
"""
Manipulate datasets: the components contained in DatasetAssociations/DatasetInstances/HDAs/LDDAs
"""
model_class = model.Dataset
foreign_key_name = 'dataset'
# TODO:?? get + error_if_uploading is common pattern, should upload check be worked into access/owed?
[docs] def __init__(self, app: MinimalManagerApp):
super().__init__(app)
self.permissions = DatasetRBACPermissions(app)
# needed for admin test
self.user_manager = users.UserManager(app)
[docs] def create(self, manage_roles=None, access_roles=None, flush=True, **kwargs):
"""
Create and return a new Dataset object.
"""
# default to NEW state on new datasets
kwargs.update(dict(state=(kwargs.get('state', model.Dataset.states.NEW))))
dataset = model.Dataset(**kwargs)
self.session().add(dataset)
self.permissions.set(dataset, manage_roles, access_roles, flush=False)
if flush:
self.session().flush()
return dataset
[docs] def copy(self, dataset, **kwargs):
raise exceptions.NotImplemented('Datasets cannot be copied')
[docs] def purge(self, dataset, flush=True):
"""
Remove the object_store/file for this dataset from storage and mark
as purged.
:raises exceptions.ConfigDoesNotAllowException: if the instance doesn't allow
"""
self.error_unless_dataset_purge_allowed(dataset)
# the following also marks dataset as purged and deleted
dataset.full_delete()
self.session().add(dataset)
if flush:
self.session().flush()
return dataset
# TODO: this may be more conv. somewhere else
# TODO: how to allow admin bypass?
[docs] def error_unless_dataset_purge_allowed(self, msg=None):
if not self.app.config.allow_user_dataset_purge:
msg = msg or 'This instance does not allow user dataset purging'
raise exceptions.ConfigDoesNotAllowException(msg)
# .... accessibility
# datasets can implement the accessible interface, but accessibility is checked in an entirely different way
# than those resources that have a user attribute (histories, pages, etc.)
[docs] def is_accessible(self, dataset, user, **kwargs):
"""
Is this dataset readable/viewable to user?
"""
if self.user_manager.is_admin(user, trans=kwargs.get("trans")):
return True
if self.has_access_permission(dataset, user):
return True
return False
[docs] def has_access_permission(self, dataset, user):
"""
Return T/F if the user has role-based access to the dataset.
"""
roles = user.all_roles_exploiting_cache() if user else []
return self.app.security_agent.can_access_dataset(roles, dataset)
# TODO: implement above for groups
# TODO: datatypes?
# .... data, object_store
# TODO: SecurityAgentDatasetRBACPermissions( object ):
[docs]class DatasetRBACPermissions:
[docs] def __init__(self, app):
self.app = app
self.access = rbac_secured.AccessDatasetRBACPermission(app)
self.manage = rbac_secured.ManageDatasetRBACPermission(app)
# TODO: temporary facade over security_agent
[docs] def available_roles(self, trans, dataset, controller='root'):
return self.app.security_agent.get_legitimate_roles(trans, dataset, controller)
[docs] def get(self, dataset, flush=True):
manage = self.manage.by_dataset(dataset)
access = self.access.by_dataset(dataset)
return (manage, access)
[docs] def set(self, dataset, manage_roles, access_roles, flush=True):
manage = self.manage.set(dataset, manage_roles or [], flush=False)
access = self.access.set(dataset, access_roles or [], flush=flush)
return (manage, access)
# ---- conv. settings
[docs] def set_public_with_single_manager(self, dataset, user, flush=True):
manage = self.manage.grant(dataset, user, flush=flush)
self.access.clear(dataset, flush=False)
return ([manage], [])
[docs] def set_private_to_one_user(self, dataset, user, flush=True):
manage = self.manage.grant(dataset, user, flush=False)
access = self.access.set_private(dataset, user, flush=flush)
return ([manage], access)
[docs]class DatasetSerializer(base.ModelSerializer, deletable.PurgableSerializerMixin):
model_manager_class = DatasetManager
[docs] def __init__(self, app: MinimalManagerApp, user_manager: users.UserManager):
super().__init__(app)
self.dataset_manager = self.manager
# needed for admin test
self.user_manager = user_manager
self.default_view = 'summary'
self.add_view('summary', [
'id',
'create_time',
'update_time',
'state',
'deleted',
'purged',
'purgable',
# 'object_store_id',
# 'external_filename',
# 'extra_files_path',
'file_size',
'total_size',
'uuid',
])
# could do visualizations and/or display_apps
[docs] def add_serializers(self):
super().add_serializers()
deletable.PurgableSerializerMixin.add_serializers(self)
self.serializers.update({
'create_time': self.serialize_date,
'update_time': self.serialize_date,
'uuid': lambda i, k, **c: str(i.uuid) if i.uuid else None,
'file_name': self.serialize_file_name,
'extra_files_path': self.serialize_extra_files_path,
'permissions': self.serialize_permissions,
'total_size': lambda i, k, **c: int(i.get_total_size()),
'file_size': lambda i, k, **c: int(i.get_size())
})
[docs] def serialize_file_name(self, dataset, key, user=None, **context):
"""
If the config allows or the user is admin, return the file name
of the file that contains this dataset's data.
"""
is_admin = self.user_manager.is_admin(user, trans=context.get("trans"))
# expensive: allow config option due to cost of operation
if is_admin or self.app.config.expose_dataset_path:
if not dataset.purged:
return dataset.file_name
self.skip()
[docs] def serialize_extra_files_path(self, dataset, key, user=None, **context):
"""
If the config allows or the user is admin, return the file path.
"""
is_admin = self.user_manager.is_admin(user, trans=context.get("trans"))
# expensive: allow config option due to cost of operation
if is_admin or self.app.config.expose_dataset_path:
if not dataset.purged:
return dataset.extra_files_path
self.skip()
[docs] def serialize_permissions(self, dataset, key, user=None, **context):
"""
"""
trans = context.get("trans")
if not self.dataset_manager.permissions.manage.is_permitted(dataset, user, trans=trans):
self.skip()
management_permissions = self.dataset_manager.permissions.manage.by_dataset(dataset)
access_permissions = self.dataset_manager.permissions.access.by_dataset(dataset)
permissions = {
'manage': [self.app.security.encode_id(perm.role.id) for perm in management_permissions],
'access': [self.app.security.encode_id(perm.role.id) for perm in access_permissions],
}
return permissions
# ============================================================================= AKA DatasetInstanceManager
[docs]class DatasetAssociationManager(base.ModelManager,
secured.AccessibleManagerMixin,
deletable.PurgableManagerMixin):
"""
DatasetAssociation/DatasetInstances are intended to be working
proxies to a Dataset, associated with either a library or a
user/history (HistoryDatasetAssociation).
"""
# DA's were meant to be proxies - but were never fully implemented as them
# Instead, a dataset association HAS a dataset but contains metadata specific to a library (lda) or user (hda)
model_class: Type[model.DatasetInstance] = model.DatasetInstance
# NOTE: model_manager_class should be set in HDA/LDA subclasses
[docs] def is_accessible(self, dataset_assoc, user, **kwargs):
"""
Is this DA accessible to `user`?
"""
# defer to the dataset
return self.dataset_manager.is_accessible(dataset_assoc.dataset, user, **kwargs)
[docs] def purge(self, dataset_assoc, flush=True):
"""
Purge this DatasetInstance and the dataset underlying it.
"""
# error here if disallowed - before jobs are stopped
# TODO: this check may belong in the controller
self.dataset_manager.error_unless_dataset_purge_allowed()
# We need to ignore a potential flush=False here and force the flush
# so that job cleanup associated with stop_creating_job will see
# the dataset as purged.
super().purge(dataset_assoc, flush=True)
# stop any jobs outputing the dataset_assoc
self.stop_creating_job(dataset_assoc)
# more importantly, purge underlying dataset as well
if dataset_assoc.dataset.user_can_purge:
self.dataset_manager.purge(dataset_assoc.dataset)
return dataset_assoc
# .... associated job
[docs] def creating_job(self, dataset_assoc):
"""
Return the `Job` that created this dataset or None if not found.
"""
# TODO: is this needed? Can't you use the dataset_assoc.creating_job attribute? When is this None?
# TODO: this would be even better if outputs and inputs were the underlying datasets
job = None
for job_output_assoc in dataset_assoc.creating_job_associations:
job = job_output_assoc.job
break
return job
[docs] def stop_creating_job(self, dataset_assoc):
"""
Stops an dataset_assoc's creating job if all the job's other outputs are deleted.
"""
# Optimize this to skip other checks if this dataset is terminal - we can infer the
# job is already complete.
if dataset_assoc.state in model.Dataset.terminal_states:
return False
if dataset_assoc.parent_id is None and len(dataset_assoc.creating_job_associations) > 0:
# Mark associated job for deletion
job = dataset_assoc.creating_job_associations[0].job
if not job.finished:
# Are *all* of the job's other output datasets deleted?
if job.check_if_output_datasets_deleted():
track_jobs_in_database = self.app.config.track_jobs_in_database
job.mark_deleted(track_jobs_in_database)
if not track_jobs_in_database:
self.app.job_manager.stop(job)
return True
return False
[docs] def is_composite(self, dataset_assoc):
"""
Return True if this hda/ldda is a composite type dataset.
.. note:: see also (whereever we keep information on composite datatypes?)
"""
return dataset_assoc.extension in self.app.datatypes_registry.get_composite_extensions()
[docs] def extra_files(self, dataset_assoc):
"""Return a list of file paths for composite files, an empty list otherwise."""
if not self.is_composite(dataset_assoc):
return []
return glob.glob(os.path.join(dataset_assoc.dataset.extra_files_path, '*'))
[docs] def serialize_dataset_association_roles(self, trans, dataset_assoc):
if hasattr(dataset_assoc, "library_dataset_dataset_association"):
library_dataset = dataset_assoc
dataset = library_dataset.library_dataset_dataset_association.dataset
else:
library_dataset = None
dataset = dataset_assoc.dataset
# Omit duplicated roles by converting to set
security_agent = trans.app.security_agent
access_roles = set(dataset.get_access_roles(security_agent))
manage_roles = set(dataset.get_manage_permissions_roles(security_agent))
access_dataset_role_list = [(access_role.name, trans.security.encode_id(access_role.id)) for access_role in access_roles]
manage_dataset_role_list = [(manage_role.name, trans.security.encode_id(manage_role.id)) for manage_role in manage_roles]
rval = dict(access_dataset_roles=access_dataset_role_list, manage_dataset_roles=manage_dataset_role_list)
if library_dataset is not None:
modify_roles = set(security_agent.get_roles_for_action(library_dataset, trans.app.security_agent.permitted_actions.LIBRARY_MODIFY))
modify_item_role_list = [(modify_role.name, trans.security.encode_id(modify_role.id)) for modify_role in modify_roles]
rval["modify_item_roles"] = modify_item_role_list
return rval
[docs] def detect_datatype(self, trans, dataset_assoc):
"""Sniff and assign the datatype to a given dataset association (ldda or hda)"""
data = trans.sa_session.query(self.model_class).get(dataset_assoc.id)
if data.datatype.is_datatype_change_allowed():
if not data.ok_to_edit_metadata():
raise exceptions.ItemAccessibilityException('This dataset is currently being used as input or output. You cannot change datatype until the jobs have completed or you have canceled them.')
else:
path = data.dataset.file_name
is_binary = check_binary(path)
datatype = sniff.guess_ext(path, trans.app.datatypes_registry.sniff_order, is_binary=is_binary)
trans.app.datatypes_registry.change_datatype(data, datatype)
trans.sa_session.flush()
self.set_metadata(trans, dataset_assoc)
else:
raise exceptions.InsufficientPermissionsException('Changing datatype "%s" is not allowed.' % (data.extension))
[docs] def set_metadata(self, trans, dataset_assoc, overwrite=False, validate=True):
"""Trigger a job that detects and sets metadata on a given dataset association (ldda or hda)"""
data = trans.sa_session.query(self.model_class).get(dataset_assoc.id)
if not data.ok_to_edit_metadata():
raise exceptions.ItemAccessibilityException('This dataset is currently being used as input or output. You cannot edit metadata until the jobs have completed or you have canceled them.')
else:
if overwrite:
for name, spec in data.metadata.spec.items():
# We need to be careful about the attributes we are resetting
if name not in ['name', 'info', 'dbkey', 'base_name']:
if spec.get('default'):
setattr(data.metadata, name, spec.unwrap(spec.get('default')))
job, *_ = self.app.datatypes_registry.set_external_metadata_tool.tool_action.execute(
self.app.datatypes_registry.set_external_metadata_tool, trans, incoming={'input1': data, 'validate': validate},
overwrite=overwrite)
self.app.job_manager.enqueue(job, tool=self.app.datatypes_registry.set_external_metadata_tool)
[docs] def update_permissions(self, trans, dataset_assoc, **kwd):
action = kwd.get('action', 'set_permissions')
if action not in ['remove_restrictions', 'make_private', 'set_permissions']:
raise exceptions.RequestParameterInvalidException('The mandatory parameter "action" has an invalid value. '
'Allowed values are: "remove_restrictions", "make_private", "set_permissions"')
if hasattr(dataset_assoc, "library_dataset_dataset_association"):
library_dataset = dataset_assoc
dataset = library_dataset.library_dataset_dataset_association.dataset
else:
library_dataset = None
dataset = dataset_assoc.dataset
current_user_roles = trans.get_current_user_roles()
can_manage = trans.app.security_agent.can_manage_dataset(current_user_roles, dataset) or trans.user_is_admin
if not can_manage:
raise exceptions.InsufficientPermissionsException('You do not have proper permissions to manage permissions on this dataset.')
if action == 'remove_restrictions':
trans.app.security_agent.make_dataset_public(dataset)
if not trans.app.security_agent.dataset_is_public(dataset):
raise exceptions.InternalServerError('An error occurred while making dataset public.')
elif action == 'make_private':
if not trans.app.security_agent.dataset_is_private_to_user(trans, dataset):
private_role = trans.app.security_agent.get_private_user_role(trans.user)
dp = trans.app.model.DatasetPermissions(trans.app.security_agent.permitted_actions.DATASET_ACCESS.action, dataset, private_role)
trans.sa_session.add(dp)
trans.sa_session.flush()
if not trans.app.security_agent.dataset_is_private_to_user(trans, dataset):
# Check again and inform the user if dataset is not private.
raise exceptions.InternalServerError('An error occurred and the dataset is NOT private.')
elif action == 'set_permissions':
def to_role_id(encoded_role_id):
role_id = base.decode_id(self.app, encoded_role_id)
return role_id
def parameters_roles_or_none(role_type):
encoded_role_ids = kwd.get(role_type, kwd.get("%s_ids[]" % role_type, None))
if encoded_role_ids is not None:
return list(map(to_role_id, encoded_role_ids))
else:
return None
access_roles = parameters_roles_or_none('access')
manage_roles = parameters_roles_or_none('manage')
modify_roles = parameters_roles_or_none('modify')
role_ids_dict = {
'DATASET_MANAGE_PERMISSIONS': manage_roles,
'DATASET_ACCESS': access_roles,
}
if library_dataset is not None:
role_ids_dict["LIBRARY_MODIFY"] = modify_roles
self._set_permissions(trans, dataset_assoc, role_ids_dict)
def _set_permissions(self, trans, dataset_assoc, roles_dict):
raise exceptions.NotImplemented()
class _UnflattenedMetadataDatasetAssociationSerializer(base.ModelSerializer,
deletable.PurgableSerializerMixin):
def __init__(self, app):
self.dataset_serializer = app[DatasetSerializer]
super().__init__(app)
def add_serializers(self):
super().add_serializers()
deletable.PurgableSerializerMixin.add_serializers(self)
self.serializers.update({
'create_time': self.serialize_date,
'update_time': self.serialize_date,
# underlying dataset
'dataset': lambda i, k, **c: self.dataset_serializer.serialize_to_view(i.dataset, view='summary', **c),
'dataset_id': self._proxy_to_dataset(key='id'),
# TODO: why is this named uuid!? The da doesn't have a uuid - it's the underlying dataset's uuid!
'uuid': self._proxy_to_dataset(key='uuid'),
# 'dataset_uuid': self._proxy_to_dataset( key='uuid' ),
'file_name': self._proxy_to_dataset(serializer=self.dataset_serializer.serialize_file_name),
'extra_files_path': self._proxy_to_dataset(serializer=self.dataset_serializer.serialize_extra_files_path),
'permissions': self._proxy_to_dataset(serializer=self.dataset_serializer.serialize_permissions),
# TODO: do the sizes proxy accurately/in the same way?
'size': lambda i, k, **c: int(i.get_size()),
'file_size': lambda i, k, **c: self.serializers['size'](i, k, **c),
'nice_size': lambda i, k, **c: i.get_size(nice_size=True),
# common to lddas and hdas - from mapping.py
'copied_from_history_dataset_association_id': self.serialize_id,
'copied_from_library_dataset_dataset_association_id': self.serialize_id,
'info': lambda i, k, **c: i.info.strip() if isinstance(i.info, str) else i.info,
'blurb': lambda i, k, **c: i.blurb,
'peek': lambda i, k, **c: i.display_peek() if i.peek and i.peek != 'no peek' else None,
'meta_files': self.serialize_meta_files,
'metadata': self.serialize_metadata,
'creating_job': self.serialize_creating_job,
'rerunnable': self.serialize_rerunnable,
'parent_id': self.serialize_id,
'designation': lambda i, k, **c: i.designation,
# 'extended_metadata': self.serialize_extended_metadata,
# 'extended_metadata_id': self.serialize_id,
# remapped
'genome_build': lambda i, k, **c: i.dbkey,
# derived (not mapped) attributes
'data_type': lambda i, k, **c: i.datatype.__class__.__module__ + '.' + i.datatype.__class__.__name__,
'converted': self.serialize_converted_datasets,
# TODO: metadata/extra files
})
# this an abstract superclass, so no views created
# because of that: we need to add a few keys that will use the default serializer
self.serializable_keyset.update(['name', 'state', 'tool_version', 'extension', 'visible', 'dbkey'])
def _proxy_to_dataset(self, serializer=None, key=None):
# dataset associations are (rough) proxies to datasets - access their serializer using this remapping fn
# remapping done by either kwarg key: IOW dataset attr key (e.g. uuid)
# or by kwarg serializer: a function that's passed in (e.g. permissions)
if key:
serializer = self.dataset_serializer.serializers.get(key)
if serializer:
return lambda i, k, **c: serializer(i.dataset, key or k, **c)
raise TypeError('kwarg serializer or key needed')
def serialize_meta_files(self, dataset_assoc, key, **context):
"""
Cycle through meta files and return them as a list of dictionaries.
"""
meta_files = []
for meta_type in dataset_assoc.metadata_file_types:
if getattr(dataset_assoc.metadata, meta_type, None):
meta_files.append(
dict(file_type=meta_type,
download_url=self.url_for('history_contents_metadata_file',
history_id=self.app.security.encode_id(dataset_assoc.history_id),
history_content_id=self.app.security.encode_id(dataset_assoc.id),
metadata_file=meta_type)))
return meta_files
def serialize_metadata(self, dataset_assoc, key, excluded=None, **context):
"""
Cycle through metadata and return as dictionary.
"""
# dbkey is a repeat actually (metadata_dbkey == genome_build)
# excluded = [ 'dbkey' ] if excluded is None else excluded
excluded = [] if excluded is None else excluded
metadata = {}
for name, spec in dataset_assoc.metadata.spec.items():
if name in excluded:
continue
val = dataset_assoc.metadata.get(name)
# NOTE: no files
if isinstance(val, model.MetadataFile):
# only when explicitly set: fetching filepaths can be expensive
if not self.app.config.expose_dataset_path:
continue
val = val.file_name
# TODO:? possibly split this off?
# If no value for metadata, look in datatype for metadata.
elif val is None and hasattr(dataset_assoc.datatype, name):
val = getattr(dataset_assoc.datatype, name)
if val is None and spec.get("optional"):
continue
metadata[name] = val
return metadata
def serialize_creating_job(self, dataset, key, **context):
"""
Return the id of the Job that created this dataset (or its original)
or None if no `creating_job` is found.
"""
if dataset.creating_job:
return self.serialize_id(dataset.creating_job, 'id')
else:
return None
def serialize_rerunnable(self, dataset, key, **context):
"""
Return False if this tool that created this dataset can't be re-run
(e.g. upload).
"""
if dataset.creating_job:
tool = self.app.toolbox.get_tool(dataset.creating_job.tool_id, dataset.creating_job.tool_version)
if tool and tool.is_workflow_compatible:
return True
return False
def serialize_converted_datasets(self, dataset_assoc, key, **context):
"""
Return a file extension -> converted dataset encoded id map with all
the existing converted datasets associated with this instance.
This filters out deleted associations.
"""
id_map = {}
for converted in dataset_assoc.implicitly_converted_datasets:
if not converted.deleted and converted.dataset:
id_map[converted.type] = self.serialize_id(converted.dataset, 'id')
return id_map
[docs]class DatasetAssociationSerializer(_UnflattenedMetadataDatasetAssociationSerializer):
# TODO: remove this class - metadata should be a sub-object instead as in the superclass
[docs] def add_serializers(self):
super().add_serializers()
# remove the single nesting key here
del self.serializers['metadata']
[docs] def serialize(self, dataset_assoc, keys, **context):
"""
Override to add metadata as flattened keys on the serialized DatasetInstance.
"""
# if 'metadata' isn't removed from keys here serialize will retrieve the un-serializable MetadataCollection
# TODO: remove these when metadata is sub-object
KEYS_HANDLED_SEPARATELY = ('metadata', )
left_to_handle = self._pluck_from_list(keys, KEYS_HANDLED_SEPARATELY)
serialized = super().serialize(dataset_assoc, keys, **context)
# add metadata directly to the dict instead of as a sub-object
if 'metadata' in left_to_handle:
metadata = self._prefixed_metadata(dataset_assoc)
serialized.update(metadata)
return serialized
# TODO: this is more util/gen. use
def _pluck_from_list(self, list_, elems):
"""
Removes found elems from list list_ and returns list of found elems if found.
"""
found = []
for elem in elems:
try:
index = list_.index(elem)
found.append(list_.pop(index))
except ValueError:
pass
return found
def _prefixed_metadata(self, dataset_assoc):
"""
Adds (a prefixed version of) the DatasetInstance metadata to the dict,
prefixing each key with 'metadata_'.
"""
# build the original, nested dictionary
metadata = self.serialize_metadata(dataset_assoc, 'metadata')
# prefix each key within and return
prefixed = {}
for key, val in metadata.items():
prefixed_key = 'metadata_' + key
prefixed[prefixed_key] = val
return prefixed
[docs]class DatasetAssociationDeserializer(base.ModelDeserializer, deletable.PurgableDeserializerMixin):
[docs] def add_deserializers(self):
super().add_deserializers()
deletable.PurgableDeserializerMixin.add_deserializers(self)
self.deserializers.update({
'name': self.deserialize_basestring,
'info': self.deserialize_basestring,
'datatype': self.deserialize_datatype,
})
self.deserializable_keyset.update(self.deserializers.keys())
# TODO: untested
[docs] def deserialize_metadata(self, dataset_assoc, metadata_key, metadata_dict, **context):
"""
"""
self.validate.type(metadata_key, metadata_dict, dict)
returned = {}
for key, val in metadata_dict.items():
returned[key] = self.deserialize_metadatum(dataset_assoc, key, val, **context)
return returned
[docs] def deserialize_metadatum(self, dataset_assoc, key, val, **context):
"""
"""
if key not in dataset_assoc.datatype.metadata_spec:
return
metadata_specification = dataset_assoc.datatype.metadata_spec[key]
if metadata_specification.get('readonly'):
return
unwrapped_val = metadata_specification.unwrap(val)
setattr(dataset_assoc.metadata, key, unwrapped_val)
# ...?
return unwrapped_val
[docs] def deserialize_datatype(self, item, key, val, **context):
if not item.datatype.is_datatype_change_allowed():
raise exceptions.RequestParameterInvalidException("The current datatype does not allow datatype changes.")
target_datatype = self.app.datatypes_registry.get_datatype_by_extension(val)
if not target_datatype:
raise exceptions.RequestParameterInvalidException("The target datatype does not exist.")
if not target_datatype.is_datatype_change_allowed():
raise exceptions.RequestParameterInvalidException("The target datatype does not allow datatype changes.")
if not item.ok_to_edit_metadata():
raise exceptions.RequestParameterInvalidException("Dataset metadata could not be updated because it is used as input or output of a running job.")
item.change_datatype(val)
sa_session = self.app.model.context
sa_session.flush()
trans = context.get("trans")
job, *_ = self.app.datatypes_registry.set_external_metadata_tool.tool_action.execute(self.app.datatypes_registry.set_external_metadata_tool, trans, incoming={'input1': item}, overwrite=False) # overwrite is False as per existing behavior
trans.app.job_manager.enqueue(job, tool=trans.app.datatypes_registry.set_external_metadata_tool)
return item.datatype
[docs]class DatasetAssociationFilterParser(base.ModelFilterParser, deletable.PurgableFiltersMixin):
def _add_parsers(self):
super()._add_parsers()
deletable.PurgableFiltersMixin._add_parsers(self)
self.orm_filter_parsers.update({
'name': {'op': ('eq', 'contains', 'like')},
'state': {'column': '_state', 'op': ('eq', 'in')},
'visible': {'op': ('eq'), 'val': self.parse_bool},
})
self.fn_filter_parsers.update({
'genome_build': self.string_standard_ops('dbkey'),
'data_type': {
'op': {
'eq': self.eq_datatype,
'isinstance': self.isinstance_datatype
}
}
})
[docs] def eq_datatype(self, dataset_assoc, class_str):
"""
Is the `dataset_assoc` datatype equal to the registered datatype `class_str`?
"""
comparison_class = self.app.datatypes_registry.get_datatype_class_by_name(class_str)
return comparison_class and dataset_assoc.datatype.__class__ == comparison_class
[docs] def isinstance_datatype(self, dataset_assoc, class_strs):
"""
Is the `dataset_assoc` datatype derived from any of the registered
datatypes in the comma separated string `class_strs`?
"""
parse_datatype_fn = self.app.datatypes_registry.get_datatype_class_by_name
comparison_classes = []
for class_str in class_strs.split(','):
datatype_class = parse_datatype_fn(class_str)
if datatype_class:
comparison_classes.append(datatype_class)
return comparison_classes and isinstance(dataset_assoc.datatype, comparison_classes)