Warning
This document is for an in-development version of Galaxy. You can alternatively view this page in the latest release if it exists or view the top of the latest release's documentation.
Source code for galaxy.tool_util.cwl.representation
""" This module is responsible for converting between Galaxy's tool
input description and the CWL description for a job json. """
import collections
import json
import logging
import os
from six import string_types
from galaxy.exceptions import RequestParameterInvalidException
from galaxy.util import safe_makedirs, string_as_bool
from galaxy.util.bunch import Bunch
from .util import set_basename_and_derived_properties
log = logging.getLogger(__name__)
NOT_PRESENT = object()
NO_GALAXY_INPUT = object()
INPUT_TYPE = Bunch(
DATA="data",
INTEGER="integer",
FLOAT="float",
TEXT="text",
BOOLEAN="boolean",
SELECT="select",
FIELD="field",
CONDITIONAL="conditional",
DATA_COLLECTON="data_collection",
)
# There are two approaches to mapping CWL tool state to Galaxy tool state
# one is to map CWL types to compound Galaxy tool parameters combinations
# with conditionals and the other is to use a new Galaxy parameter type that
# allows unions, optional specifications, etc.... The problem with the former
# is that it doesn't work with the workflow parameters for instance and is
# very complex on the backend. The problem with the latter is that the GUI
# for this parameter type is undefined curently.
USE_FIELD_TYPES = True
# There are two approaches to mapping CWL workflow inputs to Galaxy workflow
# steps. The first is to simply map everything to expressions and stick them into
# files and use data inputs - the second is to use parameter_input steps with
# fields types. We are dispatching on USE_FIELD_TYPES for now - to choose but
# may diverge later?
# There are open issues with each approach:
# - Mapping everything to files makes the GUI harder to imagine but the backend
# easier to manage in someways.
USE_STEP_PARAMETERS = USE_FIELD_TYPES
TypeRepresentation = collections.namedtuple("TypeRepresentation", ["name", "galaxy_param_type", "label", "collection_type"])
TYPE_REPRESENTATIONS = [
TypeRepresentation("null", NO_GALAXY_INPUT, "no input", None),
TypeRepresentation("integer", INPUT_TYPE.INTEGER, "an integer", None),
TypeRepresentation("float", INPUT_TYPE.FLOAT, "a decimal number", None),
TypeRepresentation("double", INPUT_TYPE.FLOAT, "a decimal number", None),
TypeRepresentation("file", INPUT_TYPE.DATA, "a dataset", None),
TypeRepresentation("directory", INPUT_TYPE.DATA, "a directory", None),
TypeRepresentation("boolean", INPUT_TYPE.BOOLEAN, "a boolean", None),
TypeRepresentation("text", INPUT_TYPE.TEXT, "a simple text field", None),
TypeRepresentation("record", INPUT_TYPE.DATA_COLLECTON, "record as a dataset collection", "record"),
TypeRepresentation("json", INPUT_TYPE.TEXT, "arbitrary JSON structure", None),
TypeRepresentation("array", INPUT_TYPE.DATA_COLLECTON, "as a dataset list", "list"),
TypeRepresentation("enum", INPUT_TYPE.TEXT, "enum value", None), # TODO: make this a select...
TypeRepresentation("field", INPUT_TYPE.FIELD, "arbitrary JSON structure", None),
]
FIELD_TYPE_REPRESENTATION = TYPE_REPRESENTATIONS[-1]
TypeRepresentation.uses_param = lambda self: self.galaxy_param_type is not NO_GALAXY_INPUT
if not USE_FIELD_TYPES:
CWL_TYPE_TO_REPRESENTATIONS = {
"Any": ["integer", "float", "file", "boolean", "text", "record", "json"],
"array": ["array"],
"string": ["text"],
"boolean": ["boolean"],
"int": ["integer"],
"float": ["float"],
"File": ["file"],
"Directory": ["directory"],
"null": ["null"],
"record": ["record"],
}
else:
CWL_TYPE_TO_REPRESENTATIONS = {
"Any": ["field"],
"array": ["array"],
"string": ["text"],
"boolean": ["boolean"],
"int": ["integer"],
"float": ["float"],
"File": ["file"],
"Directory": ["directory"],
"null": ["null"],
"record": ["record"],
"enum": ["enum"],
"double": ["double"],
}
[docs]def type_representation_from_name(type_representation_name):
for type_representation in TYPE_REPRESENTATIONS:
if type_representation.name == type_representation_name:
return type_representation
assert False
[docs]def type_descriptions_for_field_types(field_types):
type_representation_names = set()
for field_type in field_types:
if isinstance(field_type, dict) and field_type.get("type"):
field_type = field_type.get("type")
try:
type_representation_names_for_field_type = CWL_TYPE_TO_REPRESENTATIONS.get(field_type)
except TypeError:
raise Exception("Failed to convert field_type %s" % field_type)
if type_representation_names_for_field_type is None:
raise Exception("Failed to convert type %s" % field_type)
type_representation_names.update(type_representation_names_for_field_type)
type_representations = []
for type_representation in TYPE_REPRESENTATIONS:
if type_representation.name in type_representation_names:
type_representations.append(type_representation)
return type_representations
[docs]def dataset_wrapper_to_file_json(inputs_dir, dataset_wrapper):
if dataset_wrapper.ext == "expression.json":
with open(dataset_wrapper.file_name, "r") as f:
return json.load(f)
if dataset_wrapper.ext == "directory":
return dataset_wrapper_to_directory_json(inputs_dir, dataset_wrapper)
extra_files_path = dataset_wrapper.extra_files_path
secondary_files_path = os.path.join(extra_files_path, "__secondary_files__")
path = str(dataset_wrapper)
raw_file_object = {"class": "File"}
if os.path.exists(secondary_files_path):
safe_makedirs(inputs_dir)
name = os.path.basename(path)
new_input_path = os.path.join(inputs_dir, name)
os.symlink(path, new_input_path)
secondary_files = []
for secondary_file_name in os.listdir(secondary_files_path):
secondary_file_path = os.path.join(secondary_files_path, secondary_file_name)
target = os.path.join(inputs_dir, secondary_file_name)
log.info("linking [%s] to [%s]" % (secondary_file_path, target))
os.symlink(secondary_file_path, target)
is_dir = os.path.isdir(os.path.realpath(secondary_file_path))
secondary_files.append({"class": "File" if not is_dir else "Directory", "location": target})
raw_file_object["secondaryFiles"] = secondary_files
path = new_input_path
raw_file_object["location"] = path
# Verify it isn't a NoneDataset
if dataset_wrapper.unsanitized:
raw_file_object["size"] = int(dataset_wrapper.get_size())
set_basename_and_derived_properties(raw_file_object, str(dataset_wrapper.created_from_basename or dataset_wrapper.name))
return raw_file_object
[docs]def dataset_wrapper_to_directory_json(inputs_dir, dataset_wrapper):
assert dataset_wrapper.ext == "directory"
# get directory name
archive_name = str(dataset_wrapper.created_from_basename or dataset_wrapper.name)
nameroot, nameext = os.path.splitext(archive_name)
directory_name = nameroot # assume archive file name contains the directory name
# get archive location
try:
archive_location = dataset_wrapper.unsanitized.file_name
except Exception:
archive_location = None
directory_json = {"location": dataset_wrapper.extra_files_path,
"class": "Directory",
"name": directory_name,
"archive_location": archive_location,
"archive_nameext": nameext,
"archive_nameroot": nameroot}
return directory_json
[docs]def collection_wrapper_to_array(inputs_dir, wrapped_value):
rval = []
for value in wrapped_value:
rval.append(dataset_wrapper_to_file_json(inputs_dir, value))
return rval
[docs]def collection_wrapper_to_record(inputs_dir, wrapped_value):
rval = collections.OrderedDict()
for key, value in wrapped_value.items():
rval[key] = dataset_wrapper_to_file_json(inputs_dir, value)
return rval
[docs]def to_cwl_job(tool, param_dict, local_working_directory):
""" tool is Galaxy's representation of the tool and param_dict is the
parameter dictionary with wrapped values.
"""
tool_proxy = tool._cwl_tool_proxy
input_fields = tool_proxy.input_fields()
inputs = tool.inputs
input_json = {}
inputs_dir = os.path.join(local_working_directory, "_inputs")
def simple_value(input, param_dict_value, type_representation_name=None):
type_representation = type_representation_from_name(type_representation_name)
# Hmm... cwl_type isn't really the cwl type in every case,
# like in the case of json for instance.
if type_representation.galaxy_param_type == NO_GALAXY_INPUT:
assert param_dict_value is None
return None
if type_representation.name == "file":
dataset_wrapper = param_dict_value
return dataset_wrapper_to_file_json(inputs_dir, dataset_wrapper)
elif type_representation.name == "directory":
dataset_wrapper = param_dict_value
return dataset_wrapper_to_directory_json(inputs_dir, dataset_wrapper)
elif type_representation.name == "integer":
return int(str(param_dict_value))
elif type_representation.name == "long":
return int(str(param_dict_value))
elif type_representation.name in ["float", "double"]:
return float(str(param_dict_value))
elif type_representation.name == "boolean":
return string_as_bool(param_dict_value)
elif type_representation.name == "text":
return str(param_dict_value)
elif type_representation.name == "enum":
return str(param_dict_value)
elif type_representation.name == "json":
raw_value = param_dict_value.value
return json.loads(raw_value)
elif type_representation.name == "field":
if param_dict_value is None:
return None
if hasattr(param_dict_value, "value"):
# Is InputValueWrapper
rval = param_dict_value.value
if isinstance(rval, dict) and "src" in rval and rval["src"] == "json":
# needed for wf_step_connect_undeclared_param, so non-file defaults?
return rval["value"]
return rval
elif not param_dict_value.is_collection:
# Is DatasetFilenameWrapper
return dataset_wrapper_to_file_json(inputs_dir, param_dict_value)
else:
# Is DatasetCollectionWrapper
hdca_wrapper = param_dict_value
if hdca_wrapper.collection_type == "list":
# TODO: generalize to lists of lists and lists of non-files...
return collection_wrapper_to_array(inputs_dir, hdca_wrapper)
elif hdca_wrapper.collection_type.collection_type == "record":
return collection_wrapper_to_record(inputs_dir, hdca_wrapper)
elif type_representation.name == "array":
# TODO: generalize to lists of lists and lists of non-files...
return collection_wrapper_to_array(inputs_dir, param_dict_value)
elif type_representation.name == "record":
return collection_wrapper_to_record(inputs_dir, param_dict_value)
else:
return str(param_dict_value)
for input_name, input in inputs.items():
if input.type == "repeat":
only_input = next(iter(input.inputs.values()))
array_value = []
for instance in param_dict[input_name]:
array_value.append(simple_value(only_input, instance[input_name[:-len("_repeat")]]))
input_json[input_name[:-len("_repeat")]] = array_value
elif input.type == "conditional":
assert input_name in param_dict, "No value for %s in %s" % (input_name, param_dict)
current_case = param_dict[input_name]["_cwl__type_"]
if str(current_case) != "null": # str because it is a wrapped...
case_index = input.get_current_case(current_case)
case_input = input.cases[case_index].inputs["_cwl__value_"]
case_value = param_dict[input_name]["_cwl__value_"]
input_json[input_name] = simple_value(case_input, case_value, current_case)
else:
matched_field = None
for field in input_fields:
if field["name"] == input_name:
matched_field = field
field_type = field_to_field_type(matched_field)
if isinstance(field_type, list):
assert USE_FIELD_TYPES
type_descriptions = [FIELD_TYPE_REPRESENTATION]
else:
type_descriptions = type_descriptions_for_field_types([field_type])
assert len(type_descriptions) == 1
type_description_name = type_descriptions[0].name
input_json[input_name] = simple_value(input, param_dict[input_name], type_description_name)
log.debug("Galaxy Tool State is CWL State is %s" % input_json)
return input_json
[docs]def to_galaxy_parameters(tool, as_dict):
""" Tool is Galaxy's representation of the tool and as_dict is a Galaxified
representation of the input json (no paths, HDA references for instance).
"""
inputs = tool.inputs
galaxy_request = {}
def from_simple_value(input, param_dict_value, type_representation_name=None):
if type_representation_name == "json":
return json.dumps(param_dict_value)
else:
return param_dict_value
for input_name, input in inputs.items():
as_dict_value = as_dict.get(input_name, NOT_PRESENT)
galaxy_input_type = input.type
if galaxy_input_type == "repeat":
if input_name not in as_dict:
continue
only_input = next(iter(input.inputs.values()))
for index, value in enumerate(as_dict_value):
key = "%s_repeat_0|%s" % (input_name, only_input.name)
galaxy_value = from_simple_value(only_input, value)
galaxy_request[key] = galaxy_value
elif galaxy_input_type == "conditional":
case_strings = input.case_strings
# TODO: less crazy handling of defaults...
if (as_dict_value is NOT_PRESENT or as_dict_value is None) and "null" in case_strings:
type_representation_name = "null"
elif (as_dict_value is NOT_PRESENT or as_dict_value is None):
raise RequestParameterInvalidException(
"Cannot translate CWL datatype - value [%s] of type [%s] with case_strings [%s]. Non-null property must be set." % (
as_dict_value, type(as_dict_value), case_strings
)
)
elif isinstance(as_dict_value, bool) and "boolean" in case_strings:
type_representation_name = "boolean"
elif isinstance(as_dict_value, int) and "integer" in case_strings:
type_representation_name = "integer"
elif isinstance(as_dict_value, int) and "long" in case_strings:
type_representation_name = "long"
elif isinstance(as_dict_value, (int, float)) and "float" in case_strings:
type_representation_name = "float"
elif isinstance(as_dict_value, (int, float)) and "double" in case_strings:
type_representation_name = "double"
elif isinstance(as_dict_value, string_types) and "string" in case_strings:
type_representation_name = "string"
elif isinstance(as_dict_value, dict) and "src" in as_dict_value and "id" in as_dict_value and "file" in case_strings:
type_representation_name = "file"
elif isinstance(as_dict_value, dict) and "src" in as_dict_value and "id" in as_dict_value and "directory" in case_strings:
# TODO: can't disambiuate with above if both are available...
type_representation_name = "directory"
elif "field" in case_strings:
type_representation_name = "field"
elif "json" in case_strings and as_dict_value is not None:
type_representation_name = "json"
else:
raise RequestParameterInvalidException(
"Cannot translate CWL datatype - value [%s] of type [%s] with case_strings [%s]." % (
as_dict_value, type(as_dict_value), case_strings
)
)
galaxy_request["%s|_cwl__type_" % input_name] = type_representation_name
if type_representation_name != "null":
current_case_index = input.get_current_case(type_representation_name)
current_case_inputs = input.cases[current_case_index].inputs
current_case_input = current_case_inputs["_cwl__value_"]
galaxy_value = from_simple_value(current_case_input, as_dict_value, type_representation_name)
galaxy_request["%s|_cwl__value_" % input_name] = galaxy_value
elif as_dict_value is NOT_PRESENT:
continue
else:
galaxy_value = from_simple_value(input, as_dict_value)
galaxy_request[input_name] = galaxy_value
log.info("Converted galaxy_request is %s" % galaxy_request)
return galaxy_request
[docs]def field_to_field_type(field):
field_type = field["type"]
if isinstance(field_type, dict):
field_type = field_type["type"]
if isinstance(field_type, list):
field_type_length = len(field_type)
if field_type_length == 0:
raise Exception("Zero-length type list encountered, invalid CWL?")
elif len(field_type) == 1:
field_type = field_type[0]
return field_type