This document is for an old release of Galaxy. You can alternatively view this page in the latest release if it exists or view the top of the latest release's documentation.

Source code for galaxy.objectstore.s3_multipart_upload

#!/usr/bin/env python
Split large file into multiple pieces for upload to S3.
This parallelizes the task over available cores using multiprocessing.
Code mostly taken form CloudBioLinux.

import contextlib
import functools
import glob
import multiprocessing
import os
import subprocess
from multiprocessing.pool import IMapIterator

    import boto
    from boto.s3.connection import S3Connection
except ImportError:
    boto = None

[docs]def map_wrap(f): @functools.wraps(f) def wrapper(args): return f(*args) return wrapper
[docs]def mp_from_ids(s3server, mp_id, mp_keyname, mp_bucketname): """Get the multipart upload from the bucket and multipart IDs. This allows us to reconstitute a connection to the upload from within multiprocessing functions. """ if s3server['host']: conn = boto.connect_s3(aws_access_key_id=s3server['access_key'], aws_secret_access_key=s3server['secret_key'], is_secure=s3server['is_secure'], host=s3server['host'], port=s3server['port'], calling_format=boto.s3.connection.OrdinaryCallingFormat(), path=s3server['conn_path']) else: conn = S3Connection(s3server['access_key'], s3server['secret_key']) bucket = conn.lookup(mp_bucketname) mp = boto.s3.multipart.MultiPartUpload(bucket) mp.key_name = mp_keyname mp.id = mp_id return mp
[docs]@map_wrap def transfer_part(s3server, mp_id, mp_keyname, mp_bucketname, i, part): """Transfer a part of a multipart upload. Designed to be run in parallel. """ mp = mp_from_ids(s3server, mp_id, mp_keyname, mp_bucketname) with open(part) as t_handle: mp.upload_part_from_file(t_handle, i + 1) os.remove(part)
[docs]def multipart_upload(s3server, bucket, s3_key_name, tarball, mb_size): """Upload large files using Amazon's multipart upload functionality. """ cores = multiprocessing.cpu_count() def split_file(in_file, mb_size, split_num=5): prefix = os.path.join(os.path.dirname(in_file), "%sS3PART" % (os.path.basename(s3_key_name))) max_chunk = s3server['max_chunk_size'] # Split chunks so they are 5MB < chunk < 250MB(max_chunk_size) split_size = int(max(min(mb_size / (split_num * 2.0), max_chunk), 5)) if not os.path.exists("%saa" % prefix): cl = ["split", "-b%sm" % split_size, in_file, prefix] subprocess.check_call(cl) return sorted(glob.glob("%s*" % prefix)) mp = bucket.initiate_multipart_upload(s3_key_name, reduced_redundancy=s3server['use_rr']) with multimap(cores) as pmap: for _ in pmap(transfer_part, ((s3server, mp.id, mp.key_name, mp.bucket_name, i, part) for (i, part) in enumerate(split_file(tarball, mb_size, cores)))): pass mp.complete_upload()
[docs]@contextlib.contextmanager def multimap(cores=None): """Provide multiprocessing imap like function. The context manager handles setting up the pool, worked around interrupt issues and terminating the pool on completion. """ if cores is None: cores = max(multiprocessing.cpu_count() - 1, 1) def wrapper(func): def wrap(self, timeout=None): return func(self, timeout=timeout if timeout is not None else 1e100) return wrap IMapIterator.next = wrapper(IMapIterator.next) pool = multiprocessing.Pool(cores) yield pool.imap pool.terminate()