Warning
This document is for an old release of Galaxy. You can alternatively view this page in the latest release if it exists or view the top of the latest release's documentation.
Source code for galaxy.datatypes.dataproviders.decorators
"""
DataProvider related decorators.
"""
# I'd like to decorate the factory methods that give data_providers by the name they can be accessed from. e.g.:
# @provides( 'id_seq' ) # where 'id_seq' is some 'data_format' string/alias
# def get_id_seq_provider( dataset, **settings ):
# then in some central dispatch (maybe data.Data), have it look up the proper method by the data_format string
# also it would be good to have this decorator maintain a list of available providers (for a datatype)
# i don't particularly want to cut up method names ( get_([\w_]*)_provider )
# adapted from: http://stackoverflow.com
# /questions/14095616/python-can-i-programmatically-decorate-class-methods-from-a-class-instance
import copy
import logging
from functools import wraps
from urllib.parse import unquote
log = logging.getLogger(__name__)
_DATAPROVIDER_CLASS_MAP_KEY = "dataproviders"
_DATAPROVIDER_METHOD_NAME_KEY = "_dataprovider_name"
[docs]def has_dataproviders(cls):
"""
Wraps a class (generally a Datatype), finds methods within that have been
decorated with `@dataprovider` and adds them, by their name, to a map
in the class.
This allows a class to maintain a name -> method map, effectively
'registering' dataprovider factory methods::
@has_dataproviders
class MyDtype( data.Data ):
@dataprovider_factory( 'bler' )
def provide_some_bler( self, dataset, **settings ):
'''blerblerbler'''
dataset_source = providers.DatasetDataProvider( dataset )
# ... chain other, intermidiate providers here
return providers.BlerDataProvider( dataset_source, **settings )
# use the base method in data.Data
provider = dataset.datatype.dataprovider( dataset, 'bler',
my_setting='blah', ... )
# OR directly from the map
provider = dataset.datatype.dataproviders[ 'bler' ]( dataset,
my_setting='blah', ... )
"""
# init the class dataproviders map if necc.
if not hasattr(cls, _DATAPROVIDER_CLASS_MAP_KEY):
setattr(cls, _DATAPROVIDER_CLASS_MAP_KEY, {})
else:
# need to deepcopy or subclasses will modify super.dataproviders as well
existing_dataproviders = getattr(cls, _DATAPROVIDER_CLASS_MAP_KEY)
copied_dataproviders = copy.deepcopy(existing_dataproviders)
setattr(cls, _DATAPROVIDER_CLASS_MAP_KEY, copied_dataproviders)
dataproviders = getattr(cls, _DATAPROVIDER_CLASS_MAP_KEY)
# scan for methods with dataprovider names and add them to the map
# note: this has a 'cascading' effect
# where it's possible to override a super's provider with a sub's
for attr_key, attr_value in cls.__dict__.items():
# can't use isinstance( attr_value, MethodType ) bc of wrapping
if (
(callable(attr_value))
and (not attr_key.startswith("__"))
and (getattr(attr_value, _DATAPROVIDER_METHOD_NAME_KEY, None))
):
name = getattr(attr_value, _DATAPROVIDER_METHOD_NAME_KEY)
dataproviders[name] = attr_value
return cls
[docs]def dataprovider_factory(name, settings=None):
"""
Wraps a class method and marks it as a dataprovider factory and creates a
function to parse query strings to __init__ arguments as the
`parse_query_string_settings` attribute of the factory function.
An example use of the `parse_query_string_settings`::
kwargs = dataset.datatype.dataproviders[ provider ].parse_query_string_settings( query_kwargs )
return list( dataset.datatype.dataprovider( dataset, provider, **kwargs ) )
:param name: what name/key to register the factory under in `cls.dataproviders`
:type name: any hashable var
:param settings: dictionary containing key/type pairs for parsing query strings
to __init__ arguments
:type settings: dictionary
"""
# TODO:?? use *args for settings allowing mulitple dictionaries
# make a function available through the name->provider dispatch to parse query strings
# callable like:
# settings_dict = dataproviders[ provider_name ].parse_query_string_settings( query_kwargs )
# TODO: ugh - overly complicated but the best I could think of
def parse_query_string_settings(query_kwargs):
return _parse_query_string_settings(query_kwargs, settings)
def named_dataprovider_factory(func):
setattr(func, _DATAPROVIDER_METHOD_NAME_KEY, name)
func.parse_query_string_settings = parse_query_string_settings
func.settings = settings
# TODO: I want a way to inherit settings from the previous provider( this_name ) instead of defining over and over
@wraps(func)
def wrapped_dataprovider_factory(self, *args, **kwargs):
return func(self, *args, **kwargs)
return wrapped_dataprovider_factory
return named_dataprovider_factory
def _parse_query_string_settings(query_kwargs, settings=None):
"""
Parse the values in `query_kwargs` from strings to the proper types
listed in the same key in `settings`.
"""
# TODO: this was a relatively late addition: review and re-think
def list_from_query_string(s):
# assume csv
return s.split(",")
parsers = {
"int": int,
"float": float,
"bool": bool,
"list:str": lambda s: list_from_query_string(s),
"list:escaped": lambda s: [unquote(e) for e in list_from_query_string(s)],
"list:int": lambda s: [int(i) for i in list_from_query_string(s)],
}
settings = settings or {}
# yay! yet another set of query string parsers! <-- sarcasm
# work through the keys in settings finding matching keys in query_kwargs
# if found in both, get the expected/needed type from settings and store the new parsed value
# if we can't parse it (no parser, bad value), delete the key from query_kwargs so the provider will use the defaults
for key in settings:
if key in query_kwargs:
# TODO: this would be the place to sanitize any strings
query_value = query_kwargs[key]
needed_type = settings[key]
if needed_type != "str":
try:
query_kwargs[key] = parsers[needed_type](query_value)
except (KeyError, ValueError):
del query_kwargs[key]
# TODO:?? do we want to remove query_kwarg entries NOT in settings?
return query_kwargs