This document is for an in-development version of Galaxy. You can alternatively view this page in the latest release if it exists or view the top of the latest release's documentation.

Source code for galaxy.datatypes.dataproviders.decorators

DataProvider related decorators.

# I'd like to decorate the factory methods that give data_providers by the name they can be accessed from. e.g.:
# @provides( 'id_seq' ) # where 'id_seq' is some 'data_format' string/alias
# def get_id_seq_provider( dataset, **settings ):

# then in some central dispatch (maybe data.Data), have it look up the proper method by the data_format string

# also it would be good to have this decorator maintain a list of available providers (for a datatype)

# i don't particularly want to cut up method names ( get_([\w_]*)_provider )
# adapted from: http://stackoverflow.com
#    /questions/14095616/python-can-i-programmatically-decorate-class-methods-from-a-class-instance

import copy
import logging
from functools import wraps
from urllib.parse import unquote

log = logging.getLogger(__name__)

_DATAPROVIDER_METHOD_NAME_KEY = '_dataprovider_name'

[docs]def has_dataproviders(cls): """ Wraps a class (generally a Datatype), finds methods within that have been decorated with `@dataprovider` and adds them, by their name, to a map in the class. This allows a class to maintain a name -> method map, effectively 'registering' dataprovider factory methods:: @has_dataproviders class MyDtype( data.Data ): @dataprovider_factory( 'bler' ) def provide_some_bler( self, dataset, **settings ): '''blerblerbler''' dataset_source = providers.DatasetDataProvider( dataset ) # ... chain other, intermidiate providers here return providers.BlerDataProvider( dataset_source, **settings ) # use the base method in data.Data provider = dataset.datatype.dataprovider( dataset, 'bler', my_setting='blah', ... ) # OR directly from the map provider = dataset.datatype.dataproviders[ 'bler' ]( dataset, my_setting='blah', ... ) """ # init the class dataproviders map if necc. if not hasattr(cls, _DATAPROVIDER_CLASS_MAP_KEY): setattr(cls, _DATAPROVIDER_CLASS_MAP_KEY, {}) else: # need to deepcopy or subclasses will modify super.dataproviders as well existing_dataproviders = getattr(cls, _DATAPROVIDER_CLASS_MAP_KEY) copied_dataproviders = copy.deepcopy(existing_dataproviders) setattr(cls, _DATAPROVIDER_CLASS_MAP_KEY, copied_dataproviders) dataproviders = getattr(cls, _DATAPROVIDER_CLASS_MAP_KEY) # scan for methods with dataprovider names and add them to the map # note: this has a 'cascading' effect # where it's possible to override a super's provider with a sub's for attr_key, attr_value in cls.__dict__.items(): # can't use isinstance( attr_value, MethodType ) bc of wrapping if((callable(attr_value)) and (not attr_key.startswith("__")) and (getattr(attr_value, _DATAPROVIDER_METHOD_NAME_KEY, None))): name = getattr(attr_value, _DATAPROVIDER_METHOD_NAME_KEY) dataproviders[name] = attr_value return cls
[docs]def dataprovider_factory(name, settings=None): """ Wraps a class method and marks it as a dataprovider factory and creates a function to parse query strings to __init__ arguments as the `parse_query_string_settings` attribute of the factory function. An example use of the `parse_query_string_settings`:: kwargs = dataset.datatype.dataproviders[ provider ].parse_query_string_settings( query_kwargs ) return list( dataset.datatype.dataprovider( dataset, provider, **kwargs ) ) :param name: what name/key to register the factory under in `cls.dataproviders` :type name: any hashable var :param settings: dictionary containing key/type pairs for parsing query strings to __init__ arguments :type settings: dictionary """ # TODO:?? use *args for settings allowing mulitple dictionaries # make a function available through the name->provider dispatch to parse query strings # callable like: # settings_dict = dataproviders[ provider_name ].parse_query_string_settings( query_kwargs ) # TODO: ugh - overly complicated but the best I could think of def parse_query_string_settings(query_kwargs): return _parse_query_string_settings(query_kwargs, settings) def named_dataprovider_factory(func): setattr(func, _DATAPROVIDER_METHOD_NAME_KEY, name) func.parse_query_string_settings = parse_query_string_settings func.settings = settings # TODO: I want a way to inherit settings from the previous provider( this_name ) instead of defining over and over @wraps(func) def wrapped_dataprovider_factory(self, *args, **kwargs): return func(self, *args, **kwargs) return wrapped_dataprovider_factory return named_dataprovider_factory
def _parse_query_string_settings(query_kwargs, settings=None): """ Parse the values in `query_kwargs` from strings to the proper types listed in the same key in `settings`. """ # TODO: this was a relatively late addition: review and re-think def list_from_query_string(s): # assume csv return s.split(',') parsers = { 'int' : int, 'float' : float, 'bool' : bool, 'list:str' : lambda s: list_from_query_string(s), 'list:escaped' : lambda s: [unquote(e) for e in list_from_query_string(s)], 'list:int' : lambda s: [int(i) for i in list_from_query_string(s)], } settings = settings or {} # yay! yet another set of query string parsers! <-- sarcasm # work through the keys in settings finding matching keys in query_kwargs # if found in both, get the expected/needed type from settings and store the new parsed value # if we can't parse it (no parser, bad value), delete the key from query_kwargs so the provider will use the defaults for key in settings: if key in query_kwargs: # TODO: this would be the place to sanitize any strings query_value = query_kwargs[key] needed_type = settings[key] if needed_type != 'str': try: query_kwargs[key] = parsers[needed_type](query_value) except (KeyError, ValueError): del query_kwargs[key] # TODO:?? do we want to remove query_kwarg entries NOT in settings? return query_kwargs